Python(PyTorch)多语言图像感知质量指标算法

2024-08-23 03:20

本文主要是介绍Python(PyTorch)多语言图像感知质量指标算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯算法实现:🖊PyTorch单尺度和多尺度质量指标算法 | 🖊C++单尺度质量指标算法 | 🖊Rust多尺度质量指标算法 | 🖊LabVIEW单尺度质量指标算法 | 🖊MATLAB单尺度质量指标算法 | 🖊PyTorch完整参考图像质量测量指标、和分布式图像特征质量测量指标 | 🖊多尺度质量模型应用:图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python斯皮尔曼秩相关性

斯皮尔曼秩相关性是两个连续变量之间单调关系强度和方向的统计度量。因此,这些属性按其偏好排序或排列。它用符号“rho”(ρ)表示,可以取 -1 到 1 之间的值。rho 的正值表示两个变量之间存在正关系,而 rho 的负值表示负关系。rho 值为 0 表示两个变量之间没有关联。
ρ = 1 − 6 ∑ d i 2 n ( n 2 − 1 ) \rho=1-\frac{6 \sum d_i^2}{n\left(n^2-1\right)} ρ=1n(n21)6di2

  • ρ = \rho= ρ=斯皮尔曼相关系数
  • 秩 = 变量值相对于数据集中其他值的位置或顺序
  • d i = d _i= di= 每个数据项的两个变量值的排名差异
  • n = 观察总数

创建秩涉及为数据集中的值分配数字顺序,其中最小值的秩为 1,第二小的值的秩为 2,依此类推。
次序  X1  Y1  1 7 5 2 6 4 3 5 5 4 8 10 5 7 7 6 10 9 7 3 2 8 9 8 10 2 1 \begin{array}{|c|c|c|} \hline \text { 次序 } & \text { X1 } & \text { Y1 } \\ \hline 1 & 7 & 5 \\ \hline 2 & 6 & 4 \\ \hline 3 & 5 & 5 \\ \hline 4 & 8 & 10 \\ \hline 5 & 7 & 7 \\ \hline 6 & 10 & 9 \\ \hline 7 & 3 & 2 \\ \hline 8 & 9 & 8 \\ \hline 10 & 2 & 1 \\ \hline \end{array}  次序 1234567810 X1 7658710392 Y1 5451079281
X 1 X_1 X1 创建秩,

  1. 按升序对 X 1 X_1 X1 的值进行排序: 2 , 3 , 4 , 5 , 6 , 7 , 7 , 8 , 9 , 10 2,3,4,5,6,7,7,8,9,10 2,3,4,5,6,7,7,8,9,10
  2. 根据排序顺序分配秩:1、2、3、4、5、6.5、6.5、8、9、10。由于有两个并列值(6 和 7),因此分配它们的平均秩 (6.5)。

Y 1 Y_1 Y1 进行同样的处理,我们得到:
次序  秩  X 1 秩  Y 1 1 6.5 4.5 2 5 3 3 3 4.5 4 8 10 5 6.5 7 6 10 9 7 2 2 9 9 1 10 1 8 \begin{array}{|c|c|c|} \hline \text { 次序 } & \text { 秩 } X_1 & \text { 秩 } Y_1 \\ \hline 1 & 6.5 & 4.5 \\ \hline 2 & 5 & 3 \\ \hline 3 & 3 & 4.5 \\ \hline 4 & 8 & 10 \\ \hline 5 & 6.5 & 7 \\ \hline 6 & 10 & 9 \\ \hline 7 & 2 & 2 \\ \hline 9 & 9 & 1 \\ \hline 10 & 1 & 8 \\ \hline \end{array}  次序 1234567910  X16.55386.510291  Y14.534.51079218

斯皮尔曼相关计算:

在斯皮尔曼的秩相关中,该过程涉及将原始数据转换为秩。这样做是为了评估两个变量之间的单调关系,而不依赖于数据点的具体数值。

让我们考虑在变量 X 1 X_1 X1 Y 1 Y_1 Y1 中获取 10 个不同的数据点。然后按照以下步骤操作:

  • 将值按从小到大的升序排列。
  • 根据每个值在排序顺序中的位置为每个值分配排名。最小值的等级为 1,第二小的值的等级为 2,依此类推。
  • 然后找出每项数据的两个变量值的排名差异的平方。

次序  1 2 3 4 5 6 7 8 9 10 X 1 7 6 4 5 8 7 10 3 9 2 Y 1 5 4 5 6 10 7 9 2 8 1 秩  X 1 6.5 5 3 4 8 6.5 10 2 9 1 秩  Y 1 4.5 3 4.5 6 10 7 9 2 8 1 d 2 4 4 2.25 4 4 0.25 1 0 1 0 \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline \text { 次序 } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline X _1 & 7 & 6 & 4 & 5 & 8 & 7 & 10 & 3 & 9 & 2 \\ \hline Y _1 & 5 & 4 & 5 & 6 & 10 & 7 & 9 & 2 & 8 & 1 \\ \hline \text { 秩 } X_1 & 6.5 & 5 & 3 & 4 & 8 & 6.5 & 10 & 2 & 9 & 1 \\ \hline \text { 秩 } Y_1 & 4.5 & 3 & 4.5 & 6 & 10 & 7 & 9 & 2 & 8 & 1 \\ \hline d^2 & 4 & 4 & 2.25 & 4 & 4 & 0.25 & 1 & 0 & 1 & 0 \\ \hline \end{array}  次序 X1Y1  X1  Y1d21756.54.5426453434534.52.25456464581081046776.570.25710910918322209989811021110

计算 d 2 d^2 d2

获得秩后,您可以计算秩之间的差异。因此,在这种情况下,第一个数据点的秩差异为 2 ,我们对其进行平方,类似地,我们将 X i X_i Xi Y i Y_i Yi 之间的秩中的第二个数据点的差值设为 2,并将其平方,得到 4。因此,像这样,我们对秩进行差异化,并通过对其进行平方,我们得到了最终的 d 平方值。我们将所有值相加,然后在上述公式中使用该值来计算斯皮尔曼系数。

通过输入 d 2 d^2 d2 n n n 值的值
ρ = 1 − 6 ∑ d i 2 n ( n 2 − 1 ) = 1 − 6 ( 4 + 4 + 2.25 + 4 + 4 + 0.25 + 1 + 0 + 1 + 0 ) 10 ( 1 0 2 − 1 ) = 1 − 6 × 20.5 990 = 1 − 123 990 = 1 − 0.12424242424242424 = 0.8757575757575757 ≈ 0.88 \begin{aligned} \rho & =1-\frac{6 \sum d_i^2}{n\left(n^2-1\right)} \\ & =1-\frac{6(4+4+2.25+4+4+0.25+1+0+1+0)}{10\left(10^2-1\right)} \\ & =1-\frac{6 \times 20.5}{990} \\ & =1-\frac{123}{990} \\ & =1-0.12424242424242424 \\ & =0.8757575757575757 \\ & \approx 0.88 \end{aligned} ρ=1n(n21)6di2=110(1021)6(4+4+2.25+4+4+0.25+1+0+1+0)=19906×20.5=1990123=10.12424242424242424=0.87575757575757570.88

Python绘图

import pandas as pd
from scipy.stats import spearmanr
import matplotlib.pyplot as pltanscombe_data = pd.read_csv(data_url, index_col=0)
subset_data = anscombe_data[['x1', 'y1', 'x2', 'y2', 'x3', 'y3', 'x4', 'y4']]
fig, axs = plt.subplots(2, 2, figsize=(12, 8))for i, (x_col, y_col) in enumerate(zip(subset_data.columns[::2], subset_data.columns[1::2])):row = i // 2col = i % 2subset_data.plot.scatter(x=x_col, y=y_col, ax=axs[row, col], title=f'Dataset {i+1}')correlation = spearmanr(subset_data[x_col], subset_data[y_col]).correlationaxs[row, col].text(0.5, 0.9, f'Spearman correlation: {correlation:.2f}',ha='center', va='center', transform=axs[row, col].transAxes)if correlation > 0:axs[row, col].text(0.5, 0.8, 'Positive correlation', ha='center', va='center', transform=axs[row, col].transAxes)elif correlation < 0:axs[row, col].text(0.5, 0.8, 'Negative correlation', ha='center', va='center', transform=axs[row, col].transAxes)else:axs[row, col].text(0.5, 0.8, 'No correlation', ha='center', va='center', transform=axs[row, col].transAxes)if abs(correlation) > 0.7: axs[row, col].text(0.5, 0.7, 'Linear relationship', ha='center', va='center', transform=axs[row, col].transAxes)else:axs[row, col].text(0.5, 0.7, 'Non-linear relationship', ha='center', va='center', transform=axs[row, col].transAxes)plt.tight_layout()
plt.show()

Python实现相关性

from scipy.stats import spearmanr# sample data
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]# calculate Spearman's correlation coefficient and p-value
corr, pval = spearmanr(x, y)# print the result
print("Spearman's correlation coefficient:", corr)
print("p-value:", pval)

输出

Spearman's correlation coefficient: -0.9999999999999999
p-value: 1.4042654220543672e-24 

👉参阅、更新:计算思维 | 亚图跨际

这篇关于Python(PyTorch)多语言图像感知质量指标算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098209

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主