数据库分库分表(sharding)---全局主键生成策略

2024-08-23 02:08

本文主要是介绍数据库分库分表(sharding)---全局主键生成策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一部分:一些常见的主键生成策略


一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由。目前几种可行的主键生成策略有:
1. UUID:使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
2. 结合数据库维护一个Sequence表:此方案的思路也很简单,在数据库中建立一个Sequence表,表的结构类似于:

[sql]  view plain copy
  1. CREATE TABLE `SEQUENCE` (  
  2.     `tablename` varchar(30) NOT NULL,  
  3.     `nextid` bigint(20) NOT NULL,  
  4.     PRIMARY KEY (`tablename`)  
  5. ) ENGINE=InnoDB   
每当需要为某个表的新纪录生成ID时就从Sequence表中取出对应表的nextid,并将nextid的值加1后更新到数据库中以备下次使用。此方案也较简单,但缺点同样明显:由于所有插入任何都需要访问该表,该表很容易成为系统性能瓶颈,同时它也存在单点问题,一旦该表数据库失效,整个应用程序将无法工作。有人提出使用Master-Slave进行主从同步,但这也只能解决单点问题,并不能解决读写比为1:1的访问压力问题。

除此之外,还有一些方案,像对每个数据库结点分区段划分ID,以及网上的一些ID生成算法,因为缺少可操作性和实践检验,本文并不推荐。实际上,接下来,我们要介绍的是Fickr使用的一种主键生成方案,这个方案是目前我所知道的最优秀的一个方案,并且经受了实践的检验,可以为大多数应用系统所借鉴。


第二部分:一种极为优秀的主键生成策略


flickr开发团队在2010年撰文介绍了flickr使用的一种主键生成测策略,同时表示该方案在flickr上的实际运行效果也非常令人满意,原文连接:Ticket Servers: Distributed Unique Primary Keys on the Cheap 这个方案是我目前知道的最好的方案,它与一般Sequence表方案有些类似,但却很好地解决了性能瓶颈和单点问题,是一种非常可靠而高效的全局主键生成方案。


flickr这一方案的整体思想是:建立两台以上的数据库ID生成服务器,每个服务器都有一张记录各表当前ID的Sequence表,但是Sequence中ID增长的步长是服务器的数量,起始值依次错开,这样相当于把ID的生成散列到了每个服务器节点上。例如:如果我们设置两台数据库ID生成服务器,那么就让一台的Sequence表的ID起始值为1,每次增长步长为2,另一台的Sequence表的ID起始值为2,每次增长步长也为2,那么结果就是奇数的ID都将从第一台服务器上生成,偶数的ID都从第二台服务器上生成,这样就将生成ID的压力均匀分散到两台服务器上,同时配合应用程序的控制,当一个服务器失效后,系统能自动切换到另一个服务器上获取ID,从而保证了系统的容错。

关于这个方案,有几点细节这里再说明一下:

1. flickr的数据库ID生成服务器是专用服务器,服务器上只有一个数据库,数据库中表都是用于生成Sequence的,这也是因为auto-increment-offset和auto-increment-increment这两个数据库变量是数据库实例级别的变量。
2. flickr的方案中表格中的stub字段只是一个char(1) NOT NULL存根字段,并非表名,因此,一般来说,一个Sequence表只有一条纪录,可以同时为多张表生成ID,如果需要表的ID是有连续的,需要为该表单独建立Sequence表

3. 方案使用了MySQL的LAST_INSERT_ID()函数,这也决定了Sequence表只能有一条记录。
4. 使用REPLACE INTO插入数据,这是很讨巧的作法,主要是希望利用mysql自身的机制生成ID,不仅是因为这样简单,更是因为我们需要ID按照我们设定的方式(初值和步长)来生成。

5. SELECT LAST_INSERT_ID()必须要于REPLACE INTO语句在同一个数据库连接下才能得到刚刚插入的新ID,否则返回的值总是0
6. 该方案中Sequence表使用的是MyISAM引擎,以获取更高的性能,注意:MyISAM引擎使用的是表级别的锁,MyISAM对表的读写是串行的,因此不必担心在并发时两次读取会得到同一个ID(另外,应该程序也不需要同步,每个请求的线程都会得到一个新的connection,不存在需要同步的共享资源)。经过实际对比测试,使用一样的Sequence表进行ID生成,MyISAM引擎要比InnoDB表现高出很多!

7. 可使用纯JDBC实现对Sequence表的操作,以便获得更高的效率,实验表明,即使只使用spring JDBC性能也不及纯JDBC来得快!


实现该方案,应用程序同样需要做一些处理,主要是两方面的工作:


1. 自动均衡数据库ID生成服务器的访问
2. 确保在某个数据库ID生成服务器失效的情况下,能将请求转发到其他服务器上执行。


这篇关于数据库分库分表(sharding)---全局主键生成策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098048

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言