C++设计模式1:单例模式(懒汉模式和饿汉模式,以及多线程问题处理)

2024-08-22 23:44

本文主要是介绍C++设计模式1:单例模式(懒汉模式和饿汉模式,以及多线程问题处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

饿汉单例模式

        程序还没有主动获取实例对象,该对象就产生了,也就是程序刚开始运行,这个对象就已经初始化了。 

class Singleton
{
public:~Singleton(){std::cout << "~Singleton()" << std::endl;}static Singleton* get_instance(){return &singleton;}
private:Singleton() {};Singleton(const Singleton& othersingle) = delete;Singleton& operator=(const Singleton& othersingle) = delete;static Singleton singleton;
};
Singleton Singleton::singleton;//类的静态成员变量要在类外定义
int main()
{Singleton* s1 = Singleton::get_instance();Singleton* s2 = Singleton::get_instance();Singleton* s3 = Singleton::get_instance();std::cout << "s1:" << s1 << std::endl;std::cout << "s2:" << s2 << std::endl;std::cout << "s3:" << s3 << std::endl;
}

        显然饿汉模式是线程安全的,因为单例对象的初始化发生在.bss段,和栈无关,而线程的启动依赖于函数,函数需要开辟栈内存,所以是线程安全的。但是饿汉模式也有缺点,如果这个单例类的构造函数过于复杂,包含了线程和数据库等等一系列的初始化过程,需要进行大量操作,就会导致程序启动变慢。

运行结果如下:    三个对象的地址是一样的,说明是同一个对象,并且最后也只是析构了一次。

 懒汉模式

实例对象直到程序中有模块获取它时,才会初始化这个对象。

#include<iostream>
class Singleton
{
public:~Singleton(){std::cout << "~Singleton()" << std::endl;}static Singleton* get_instance(){if (singleton == nullptr){singleton = new Singleton();}return singleton;}
private:Singleton() {};Singleton(const Singleton& othersingle) = delete;Singleton& operator=(const Singleton& othersingle) = delete;static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{Singleton* s1 = Singleton::get_instance();Singleton* s2 = Singleton::get_instance();Singleton* s3 = Singleton::get_instance();std::cout << "s1:" << s1 << std::endl;std::cout << "s2:" << s2 << std::endl;std::cout << "s3:" << s3 << std::endl;
}

运行结果。 

         上面这种写法显然是线程不安全的,因为要构造一个单例,构造函数里面可能需要进行大量的操作。这段代码就会产生竞态条件,我们需要通过线程间的互斥操作来解决。

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:~Singleton(){std::cout << "~Singleton()" << std::endl;}static Singleton* get_instance(){std::lock_guard<std::mutex>loc(mtx);if (singleton == nullptr){singleton = new Singleton();}return singleton;}
private:Singleton() {};Singleton(const Singleton& othersingle) = delete;Singleton& operator=(const Singleton& othersingle) = delete;static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{Singleton* s1 = Singleton::get_instance();Singleton* s2 = Singleton::get_instance();Singleton* s3 = Singleton::get_instance();std::cout << "s1:" << s1 << std::endl;std::cout << "s2:" << s2 << std::endl;std::cout << "s3:" << s3 << std::endl;
}

         这种写法虽然可以解决问题,但是加锁的位置,对程序的性能损耗较大,每次要先拿到锁才去判断是否为nullptr,如果不是,这把锁就白拿了,换一下加锁的位置。

        

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:~Singleton(){std::cout << "~Singleton()" << std::endl;}static Singleton* get_instance(){if (singleton == nullptr){std::lock_guard<std::mutex>loc(mtx);singleton = new Singleton();}return singleton;}
private:Singleton() {};Singleton(const Singleton& othersingle) = delete;Singleton& operator=(const Singleton& othersingle) = delete;static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{Singleton* s1 = Singleton::get_instance();Singleton* s2 = Singleton::get_instance();Singleton* s3 = Singleton::get_instance();std::cout << "s1:" << s1 << std::endl;std::cout << "s2:" << s2 << std::endl;std::cout << "s3:" << s3 << std::endl;
}

        这次加锁位置明显可以减少程序的性能损耗,但是会出现一个问题,假如开始单例是nullptr,一个线程通过if语句,并且拿到了锁,它只是开辟了内存,并且构造了单例对象,但是构造过程没有执行完全,还没有给这个单例对象赋值, 这时候这个单例还是nullptr,另一个线程这时候也可以通过if语句了,因为单例是nullptr,但是它不能构造单例,因为没有拿到锁,这时候第一个线程给单例赋值完成后,释放了锁,第二个线程拿到锁,就又构造了一次单例。

        要解决这个问题也简单,那就是双重if语句判断。

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:~Singleton(){std::cout << "~Singleton()" << std::endl;}static Singleton* get_instance(){if (singleton == nullptr){std::lock_guard<std::mutex>loc(mtx);if (singleton == nullptr){singleton = new Singleton();}}return singleton;}
private:Singleton() {};Singleton(const Singleton& othersingle) = delete;Singleton& operator=(const Singleton& othersingle) = delete;static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{Singleton* s1 = Singleton::get_instance();Singleton* s2 = Singleton::get_instance();Singleton* s3 = Singleton::get_instance();std::cout << "s1:" << s1 << std::endl;std::cout << "s2:" << s2 << std::endl;std::cout << "s3:" << s3 << std::endl;
}

运行结果还是一样的。

        如果我们要简化上面的写法呢?我们可以使用到函数静态局部变量的初始化机制,函数静态局部变量在初始化的时候,底层的汇编指令会自动添加上线程互斥的指令,就可以省去我们加锁的步骤了。而且只有当程序主动调用get_instance函数的时候,单例才会被初始化,也省去了我们的nullptr双重判断了。

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:~Singleton(){std::cout << "~Singleton()" << std::endl;}static Singleton* get_instance(){static Singleton singleton;return &singleton;}
private:Singleton() {};Singleton(const Singleton& othersingle) = delete;Singleton& operator=(const Singleton& othersingle) = delete;static Singleton* singleton;
};
int main()
{Singleton* s1 = Singleton::get_instance();Singleton* s2 = Singleton::get_instance();Singleton* s3 = Singleton::get_instance();std::cout << "s1:" << s1 << std::endl;std::cout << "s2:" << s2 << std::endl;std::cout << "s3:" << s3 << std::endl;
}

运行效果一样。 

这篇关于C++设计模式1:单例模式(懒汉模式和饿汉模式,以及多线程问题处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097738

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea