数学基础 -- 线性代数之排列及其逆序数

2024-08-22 23:12

本文主要是介绍数学基础 -- 线性代数之排列及其逆序数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

排列及其逆序数

排列(Permutation)是指将一个有限集合的所有元素按照一定的顺序进行排列,每种不同的排列都称为该集合的一个排列。例如,集合 { 1 , 2 , 3 } \{1, 2, 3\} {1,2,3} 的所有排列为 ( 1 , 2 , 3 ) (1, 2, 3) (1,2,3) ( 1 , 3 , 2 ) (1, 3, 2) (1,3,2) ( 2 , 1 , 3 ) (2, 1, 3) (2,1,3) ( 2 , 3 , 1 ) (2, 3, 1) (2,3,1) ( 3 , 1 , 2 ) (3, 1, 2) (3,1,2) ( 3 , 2 , 1 ) (3, 2, 1) (3,2,1)

逆序数

逆序数(Inversion Number)是排列中的一种度量方式,表示一个排列中,出现了多少对元素的相对顺序与它们在集合中的自然顺序相反。例如,对于排列 ( 2 , 3 , 1 ) (2, 3, 1) (2,3,1),我们可以看到元素“2”比“1”大却排在“1”的前面,因此这对元素构成了一个逆序。同样,“3”比“1”大且也排在“1”的前面,因此它也是逆序的一对。因此,排列 ( 2 , 3 , 1 ) (2, 3, 1) (2,3,1) 的逆序数为2。

如何计算逆序数

假设给定一个长度为 n n n 的排列 ( a 1 , a 2 , … , a n ) (a_1, a_2, \dots, a_n) (a1,a2,,an),逆序数可以通过如下步骤计算:

  1. 对于每个元素 a i a_i ai,找到后面所有比 a i a_i ai 小的元素的个数。
  2. 将所有这些个数相加,得到排列的逆序数。

举例说明

假设排列为 ( 3 , 1 , 2 ) (3, 1, 2) (3,1,2),我们计算它的逆序数:

  • 对于元素 3:后面比 3 小的元素有 1 和 2,共 2 个逆序。
  • 对于元素 1:后面没有比 1 小的元素,所以没有逆序。
  • 对于元素 2:后面没有比 2 小的元素,所以没有逆序。

因此,排列 ( 3 , 1 , 2 ) (3, 1, 2) (3,1,2) 的逆序数为 2。

常见用途

逆序数的概念在算法和数据结构中有广泛应用,特别是在排序算法(如归并排序、快速排序)以及计算排列的奇偶性(确定排列是否是偶排列或奇排列)等问题中。

这篇关于数学基础 -- 线性代数之排列及其逆序数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097673

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显