概率统计Python计算:随机变量的分布函数

2024-08-22 22:58

本文主要是介绍概率统计Python计算:随机变量的分布函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
任何随机变量 X X X都有其分布函数(或称为累积分布函数)
F ( x ) = P ( X ≤ x ) , x ∈ ( − ∞ , + ∞ ) . F(x)=P(X\leq x), x\in (-\infty,+\infty). F(x)=P(Xx),x(,+).
例1 向半径为 r r r的圆内任一投掷一个点,求此点到圆心的距离 X X X的分布函数,并计算 P ( X > r / 2 ) P(X>r/2) P(X>r/2)
:显然,这是一个2-维几何概型, X X X的取值范围为 [ 0 , r ] [0,r] [0,r]。当 x < 0 x<0 x<0时, X ≤ x X\leq x Xx是个不可能事件,故 F ( x ) = P ( X ≤ x ) = 0 F(x)=P(X\leq x)=0 F(x)=P(Xx)=0。当 x > r x>r x>r时,根据 X X X的定义, X ≤ x X\leq x Xx是一个必然事件。故 F ( x ) = P ( X ≤ x ) = 1 F(x)=P(X\leq x)=1 F(x)=P(Xx)=1。当 0 ≤ x ≤ r 0\leq x\leq r 0xr时, X ≤ x X\leq x Xx为事件:投掷的点落在以 x x x为半径的圆内,故 F ( x ) = P ( X ≤ x ) = π x 2 π r 2 = x 2 r 2 F(x)=P(X\leq x)=\frac{\pi x^2}{\pi r^2}=\frac{x^2}{r^2} F(x)=P(Xx)=πr2πx2=r2x2。于是, X X X的分布函数为
F ( x ) = P ( X ≤ x ) = { 0 x < 0 ( x r ) 2 0 ≤ x ≤ r 1 x > r . F(x)=P(X\leq x)=\begin{cases}0&x<0\\\left(\frac{x}{r}\right)^2&0\leq x\leq r\\1&x>r\end{cases}. F(x)=P(Xx)= 0(rx)21x<00xrx>r.
P ( X > r / 2 ) = 1 − P ( X ≤ r / 2 ) = 1 − F ( r / 2 ) = 1 − 1 / 4 = 3 / 4 P(X>r/2)=1-P(X\leq r/2)=1-F(r/2)=1-1/4=3/4 P(X>r/2)=1P(Xr/2)=1F(r/2)=11/4=3/4
在Python中定义数学函数,作为自变量的参数可以是numpy的array数组类型,算得的函数值也构成一个数组。由于numpy拥有大量对数组的高效操作,故对定义分段函数带来很多方便。此外,这样定义的数学函数更便于用matplot包中的工具绘制其图形。下列Python代码定义本例中随机变量 X X X的分布函数(累积概率函数)并用以计算概率 P ( X > r / 2 ) P(X>r/2) P(X>r/2)(假定r=2)。

import numpy as np                  #导入numpy
def cdf(x, r):if type(x)!=type(np.array([])):	#非数组类型x=np.array([x])				#凑成统一的数组类型y=np.zeros(x.size)				#函数值初始化为0d=np.where((x>=0)&(x<=r))		#x中介于0~r的部分y[d]=(x[d]/r)**2				#x介于0~r对应的函数值d=np.where(x>r)					#x中大于r的部分y[d]=1							#x中大于r对应的函数值if y.size==1:					#单一函数值return y[0]return y						#数组型函数值
print('P(X>r/2)=%.4f'%(1-cdf(x=1/2, r=2))

程序的第1行导入numpy包。为使函数既能计算单一自变量对应的函数值又能计算对应一组自变量值对应的函数值,第3~4行的if语句对单一自变量转换成数组类型,以便统一处理。第5行调用numpy的zeros函数产生一个元素均为0的数组,该函数的调用接口为
zeros(size) \text{zeros(size)} zeros(size)
其中参数size指定所产生的元素为0的数组所含的元素个数。在程序的第5行,传递给参数size的值是表示自变量的参数x的元素个数,创建一个与x等长的函数值数组y,所有元素初始化为0。
numpy的函数where,可用来计算一个数组中满足指定条件的元素对应的下标形成的序列,其调用接口为
where(condition) \text{where(condition)} where(condition)
参数condition是一个描述数组元素需满足的条件。在程序的第6行中表示自变量的参数x中值介于0~r的元素计算对应的下表序列d。第7行将y[d]中的元素置为函数值 ( x r ) 2 \left(\frac{x}{r}\right)^2 (rx)2。第8行再次将x中值大于r的元素下标序记为d,第9行将y[d]中的元素置为1。第10~11行的if语句返回单一的函数值,第12行返回数组型的函数值。第13行调用以上定义的cdf函数计算概率 P ( X > r / 2 ) P(X>r/2) P(X>r/2)。运行程序输出

P(X>r/2)=0.75

恰为 P ( X > r / 2 ) = 3 / 4 P(X>r/2)=3/4 P(X>r/2)=3/4的值。
Python的matplotlib包含有大量的数据可视化的方法。其中的pyplot对象拥有绘制各种平面图形的函数。下列代码完成绘制以上定义的 X X X的分布函数 F ( x ) F(x) F(x) r = 2 r=2 r=2时的图像。

from matplotlib import pyplot as plt    #导入绘图对象pyplot
import numpy as np                      #导入numpy
x=np.linspace(-0.5, 2.5, 256)           #设置自变量数组
r=2										#设置圆盘半径r为2
y=cdf(x, r)                             #计算函数值y
plt.plot(x, y)                          #绘制y=F(x)的图像
plt.show()                              #展示图形

程序的第1行导入matplotlib包中的pyplot。第3行调用numpy的linspace函数设置表示横坐标上的绘图范围,也就是函数 y = F ( x ) y=F(x) y=F(x)的自变量取值范围的数组。该函数的调用接口为
linspace(start, stop, num) \text{linspace(start, stop, num)} linspace(start, stop, num)
其中参数start和stop分别表示取值的起点和终点,num表示介于start和stop之间的等分点的个数。例如,程序第3行中linspace(-0.5,2.5,256)表示创建一个含有256个元素的数组x,这些元素的最小值为start,最大值为stop,相邻元素是等差的。第4行设置圆形区域半径r为2,第5行调用前面程序定义的函数cdf,传递x和r,计算cdf(x)得到的数组存于y。第6行调用pyplot的plot函数绘制函数 y = F ( x ) y=F(x) y=F(x)的图像。该函数的调用接口为:
plot(x, y) \text{plot(x, y)} plot(x, y)
其中,参数x表示横坐标的取值,y表示对应的函数值。运行程序,第7行展示如下图形。
在这里插入图片描述
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:随机变量的分布函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097640

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid