本文主要是介绍维度数据模型建模过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
- 选择业务流程
确认那些业务处理流程是数据仓库应该覆盖的,是维度方法的基础。因此,建模的第一个步骤是描述需要建模的业务流程。例如,需要了解和分析一个零售店的销售情况,那么与该零售店销售相关的业务流程都是需要关注的。为了描述业务流程,可以简单利用文本记录,或者使用“业务流程建模标注”(BPMN)方法,也可以使用统一建模语言(UML)或其他类似方法。
- 声明粒度
确定了业务流程后,下一步是声明模型的粒度。这里的粒度用于确定事实中表示的是什么,例如,一个零售店的顾客在购物小票上的一个购买条目。在选择维度和事实前必须声明粒度,因为每个候选维度或事实必须与定义的粒度保持一致。
从给定的业务流程获取数据时,原始粒度是最低级别的粒度。建议从原始粒度数据开始设计,因为原始记录能够给满足无法预期的用户查询。汇总后的数据粒度对优化查询性能很重要,但这样的粒度设计往往不能满足对细节数据的查询需求。不同的事实可以有不同的粒度,但同一事实中不要混用多种不同的粒度。
设计过程的第三步是确认模型的维度。维度的粒度必须和第二部所声明的粒度一致。维度表是事实表的基础,也说明了事实表的数据是从哪里采集来的。典型的维度都是名词,如日期、商店、库存等。维度表存储了某一维度的所有相关数据,例如,日期维度应该包括年、季度、月、周、日等数据。
- 确认维度
设计过程的第三步是确认模型的维度。维度的粒度必须和第二部所声明的粒度一致。维度表是事实表的基础,也说明了事实表的数据是从哪里采集来的。典型的维度都是名词,如日期、商店、库存等。维度表存储了某一维度的所有相关数据,例如,日期维度应该包括年、季度、月、周、日等数据。
- 确认事实
最后一步是确认事实,这一步识别数字化的度量,构成事实表的记录。用户是直接通过事实表的访问获取数据仓库存储的数据。大部分事实表的度量都是数字类型的,可累加,可计算,如成本、数量、金额等。
这篇关于维度数据模型建模过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!