超容易出成果的方向:多模态医学图像处理!

2024-08-22 20:04

本文主要是介绍超容易出成果的方向:多模态医学图像处理!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

哈喽朋友们,今天给大家推荐一个比较容易出成果的方向:多模态医学图像处理。

众所周知,多模态如今火的一塌糊涂,早就成了很多应用科学与AI结合的重要赛道,特别是在医学图像处理领域。 由此提出的多模态医学图像处理融合了多种图像数据,能完美克服单一成像技术的局限性,给我们提供更全面、更准确的医学信息,显著提高诊断精度和治疗效率。

更牛的是,这种技术涵盖了从癌症诊断到神经科学研究等多个医学领域,可以说前景非常广阔,相关文章自然也就发的很多。

目前这方向应用广,细分的研究小方向也比较多,主流的有多模态医学图像分割、分类、合成、融合、特征提取等。我这边为了方便大家找思路找idea,根据这些细分小方向整理好了对应的最新论文,10篇基本都有代码,想发论文的朋友别错过呀。

论文原文+开源代码需要的同学看文末

图像分割

Multimodal Information Interaction for Medical Image Segmentation

方法:论文介绍了一种创新的多模态信息交叉Transformer(MicFormer),这是一种用于医学图像分割的多模态数据融合方法。MicFormer采用双流架构同时从每种模态中提取特征,并通过交叉Transformer查询一个模态的特征并从另一个模态检索相应的响应,以促进双模态特征之间的有效通信。

创新点:

  • 提出了一种新颖的双流交叉网络MicFormer,由三个主要组件组成:U形并行特征网络、Swin Transformer和Cross Transformer。

  • 提出了一种新颖的多模态Transformer模型MicFormer,用于处理多模态任务中的特征融合和匹配。通过利用双流模型,MicFormer能够从两种模态中充分抽象出特征。其中关键的创新是引入了可变形交叉注意模块,它提升了两种模态特征之间的查询和交流。

图像融合

MDC-RHT: Multi-Modal Medical Image Fusion via Multi-Dimensional Dynamic Convolution and Residual Hybrid Transformer

方法:本文提出了一种多模态医学图像融合方法,使用了多维动态卷积(MDC)和残差混合Transformer(RHT),命名为MDC-RHT。该方法采用MDC替代了传统的卷积计算,设计了一个RHT模块,可以有效提取全局特征并增强相邻窗口特征的直接交互。

创新点:

  • 提出了一种多尺度融合网络,该网络结合了多维动态卷积和残差混合Transformer的特性。

  • MDC-RHT网络:该网络采用多维动态卷积(MDC)和残差混合Transformer(RHT)来实现多模态医学图像融合。MDC-RHT网络通过使用MDC进行卷积计算,有效捕捉全局特征和局部细节。同时,设计了RHT模块,结合通道注意力和基于窗口的自注意机制,实现了有效的特征交互。

图像分类

Split Learning of Multi-Modal Medical Image Classification

方法:论文提出了基于SplitFusionNet的多模态和多标签皮肤病变分类的机器学习框架,通过将DNN模型分割为客户端和服务器端,并利用互联网基于套接字编程进行特征和梯度的传输来提高计算资源的利用效率,同时保护数据隐私。

创新点:

  • 引入了SplitFusionNet框架,该框架基于u-shape split learning范例,实现了多模态和多标签皮肤病变分类。

  • 提出了一个基于分割学习的ML框架,通过将DNN模型分为客户端和服务器层,实现了在强大服务器上的计算密集型中间层训练,而不需要共享原始数据。同时,通过实现特征和梯度的无损压缩/解压缩机制,本文解决了通信速度的瓶颈问题。

图像特征提取

Continual Self-supervised Learning: Towards Universal Multi-modal Medical Data Representation Learning

方法:论文提出了一种名为MedCoSS的方法,这是一种持续的自监督学习方法,旨在解决多模态医学数据预训练中的一些挑战,比如不同模态数据之间的表示学习冲突,以及如何有效地整合新模态数据而不遗忘旧知识。

创新点:

  • 将传统的联合自监督学习(SSL)方法调整为连续自监督学习方法,通过将每个阶段分配给特定的模态来解决模态数据碰撞和知识遗忘的问题。

  • 引入了基于聚类采样和特征蒸馏的缓冲区数据管理策略,以及基于内模态混合的数据增强策略,以提高知识保留和模型泛化能力。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“多模态医学”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

这篇关于超容易出成果的方向:多模态医学图像处理!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097257

相关文章

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

参会邀请 | 第二届机器视觉、图像处理与影像技术国际会议(MVIPIT 2024)

第二届机器视觉、图像处理与影像技术国际会议(MVIPIT 2024)将于2024年9月13日-15日在中国张家口召开。 MVIPIT 2024聚焦机器视觉、图像处理与影像技术,旨在为专家、学者和研究人员提供一个国际平台,分享研究成果,讨论问题和挑战,探索前沿技术。诚邀高校、科研院所、企业等有关方面的专家学者参加会议。 9月13日(周五):签到日 9月14日(周六):会议日 9月15日(周日

[SWPUCTF 2021 新生赛]web方向(一到六题) 解题思路,实操解析,解题软件使用,解题方法教程

题目来源 NSSCTF | 在线CTF平台因为热爱,所以长远!NSSCTF平台秉承着开放、自由、共享的精神,欢迎每一个CTFer使用。https://www.nssctf.cn/problem   [SWPUCTF 2021 新生赛]gift_F12 这个题目简单打开后是一个网页  我们一般按F12或者是右键查看源代码。接着我们点击ctrl+f后快速查找,根据题目给的格式我们搜索c

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

无人机执照拿到后怎么就业?方向有哪些?就业率如何?

无人机执照拿到后,就业方向广泛且多样,就业率也呈现出逐年上升的趋势。这主要得益于无人机技术的广泛应用和无人机市场的不断扩大。以下是对无人机执照持有者就业情况的详细分析: 就业方向 1. 无人机飞行操作: 无人机飞手可以从事无人机的起飞、飞行和降落等具体操作,满足不同行业对无人机飞行的需求。 应用领域包括但不限于农业植保、电力巡线、石油管道巡线、航拍、国土资源勘查、应急救援、交通监控

UVA10010(八方向暴力枚举)

Where's Waldorf? Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18656 Description Where's Waldo

sobel_dir 方向图和sobel的一些想法

怎么使用呢! 1,通过方向图可以提取 直线 或水平线region区域,提出来的dirregion区域 2,通过sobel的幅度度,分割出变化剧烈的区域 fuduregion 3,两个region相交,可以准确定位幅度范围内+方向的边界 4,sobel算子是可以只做x,y方向的单项幅度图的,sobel_amp在一定场合有特别的用处,值得关注 5,关于大掩码超过3的size,要注意的

08_Tensorflow2图像处理秘籍:让图片‘听话’,AI也能成艺术家!

1. 图像数据处理 图像处理是指图像在神经网络训练之前的预处理,是人工智能视觉领域的重要组成部分。通过图像处理技术对图像数据集进行处理有两方面的作用:(1)将原始数据集处理成合格的、规范是数据集;(2)通过图像处理技术实现对原始数据集的增广。 # 库引入import matplotlib.pyplot as pltimport tensorflow as tf# 图像读取image_