《人工智能 一种现代方法》第三版 第4章 超越经典搜索 笔记摘录

本文主要是介绍《人工智能 一种现代方法》第三版 第4章 超越经典搜索 笔记摘录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第4章 超越经典搜索

综述:

本章讨论不受环境性质的约束。

一、二状态空间的局部搜索算法,考虑对一个活着多个状态进行评价和修改,而不是系统的探索从初始状态开始的路径。

局部搜索算法包括模拟退火法和进化生物学带来的遗传算法

三、四不在强调环境的确定性和可观察性,主要思想是如果Agent不能准确预测传感器的接受,那么它需要考虑当传感器接收到应急状态发生时该做什么,由于只具备部分可观察性,Agent需要跟踪可能的状态。

五在线搜索,Agent面对的是完全位置的空间要从头开始搜索。

正文

  • 局部搜索算法和最优化问题
    1. 局部最优算法和最优化问题
      1. 如果到目标的路径是无关紧要,可以考虑不关心路径的算法,局部搜索算法从单个当前节点处罚,通常只移动到它的邻近状态。一般情况下不保留搜索路径。
      2. 搜索算法不是系统化,但是又两个关键的优点
        1. 他们只用很少的内存—通常是常数
        2. 他们经常能在系统化算法不适用的很大或者无限的(连续的)状态空间中找到合适的解
      3. 借助状态空间地形图理解局部搜索:局部搜索算法就是探索这个地形图,如果存在解,那么完备的局部搜索算法总能找到解;最优的局部搜索算法总能找到全局最小值/最大值。

Ps:

横坐标:状态定义 纵坐标:启发式代价函数或者目标函数定义

如果纵坐标对应于代价,那么目标就是找到最低谷—即全局最小值

如果纵坐标对应于目标函数,那么目标就是找到最高峰—即全局最大值

    1. 爬山法
      1. 最陡上升版本:简单的循环过程,不断向值增加的方向持续移动。
      2. 局部搜索算法一般使用完整状态形式化。
      3. 爬山法有事也被称为贪婪局部搜索:因为她只选择邻居中状态最好的一个,而不考虑下一步该如何走。

    1. 爬山法容易陷入的困境:
      1. 局部极大值:局部极大值比他的每个邻接结点都高的封顶,但是比全局最大值要小。爬山算法达到局部最大值附近就会被拉向封顶,然后卡在局部极大值出无法前进。
      2. 山脊:山脊造成一系列的局部最大值,贪婪算法很难处理这种情况
      3. 高原:在状态空间地形图上的一块平原区域,他可能是一块平的局部最大值,不存在上山的出口,或者是山肩。爬山法在高原可能会迷路。
    2. 爬山法有很多变形:
      1. 随机爬山法:在上山移动中随机地选择下一步,被选择的概率可能随着上山移动的陡峭程度不同而不同。
      2. 首选爬山法:实现了随即爬山法,随机的生成后继结点知道生成一个优于当前结点的后继。(在后继结点很多的时候是个好策略)
      3. 随机重启爬山法:通过随机生成初始状态来导引爬山搜索,知道找到目标。
    3. 模拟退火法搜索
      1. 爬山法从来不下山,即不会向值比当前结点低的(或代价高的)方向搜索,是不完备的,可能卡在局部最大值上
      2. 纯粹的随机是完备的,但是效率太低
      3. 模拟退火算法,把爬山法和随机行走以某周方式结合:开始使劲摇晃(先高温加热)然后慢慢降低摇晃的强度(也就是逐渐降温)
      4. 模拟退火算法的内层循环和爬山法类似,只是它没有选择最佳移动,选择的是随机移动,如果改移动使情况改善,该移动则被接受,否则,算法以某个小于1的概率接受该移动。如果移动导致状态变坏,概率则成指数级下降—评估值变坏,这个概率也随温度而下降:开始T高的时候可能允许“坏的”移动,T越低则越不可能发生,如果调度让T下降的足够慢,算法找到全局最优解的概率逼近1.

      1. 模拟退火法现在广泛用于工厂调度、其他大型最优化任务
    1. 局部束搜索
      1. 局部束搜索算法记录K个状态,而不是只记录一个。它从k个随机生成的状态开始,每一步全部k个状态的所有后继状态全部被生成,如果其中有一个目标状态,则算法停止,否则,它从整个后继状态列表中选择k个最佳的后继,重复该过程。
      2. 虽然局部束搜索算法看起来像并行运行的k个随机重启搜索,但是两者却不同,随机重启搜索,每个搜索运行过程都是独立的,而局部束搜索中,有用的信息在并行的搜索线程之间传递。
      3. 随机束搜索:为了解决k个状态缺乏多样性,很快会聚集在状态空间中的一小快区域内的问题。将从后继集合中选择最好的k个后继状态,改为随机选择k个后继状态,其中选择给定后继状态的概率是状态值的递增函数。
    2. 遗传算法
      1. 是随机束搜索的变形,通过把两个父状态结合生成后继,而不是通过修改单一状态进行。
      2. 算法思想:
        1. 概念解释
          1. 种群:k个随机生成的状态
          2. 个体:每个状态叫做个体
        2. 算法思想:
          1. 从k个随即成长的状态开始,每个状态都由它的目标函数或适应度函数给出评估值,对于好的状态,适应度函数应返回较高的值。
        3. 算法图示

 

        1. 算法注意点:如果两个父串差别很大,那么咋叫产生的状态和每个父状态都相差很远,通常的情况早期的种族是多样性的,因此咋叫在搜索过程的早起阶段在状态空间中采用较大的步调,而后来当大多数个体都很相似的时候采取较小的步调。
      1. 主要优点:遗传算法和随机束搜索一样,结合了上山趋势、随机探索、和并行线程之间交换信息。遗传算法最主要的优点在于杂交。杂交的优势在于他能够将独立发展出来的能执行有用功能的的字符区域结合起来,提高了搜索的粒度。
  • 连续空间中得局部搜索

    1. a为步长
  • 使用不确定动作的搜索
    1. 与或搜索树
      1. 在确定环境中,分支是由Agent在每个状态下的选择形成的,我们称这样的结点为或结点。
      2. 在不确定的环境中,分支是由环境选择每个行动的后果,我们称这样的结点为与结点
      3. 由这两种结点构成的树称之为与或树
      4. 与或搜索问题的解是一颗子树:
        1. 每个叶子上都有目标结点
        2. 在或结点上规范一个活动
        3. 在与结点上包含了所有后果。
      5. 对比了解与或图
  • 使用部分可观察信息的搜索
    1. 无观察信息的搜索
      1. 如果Agent感知不到任何信息,我们称之为无传感问题,有时也成为相容问题。
      2. 如下定义无传感的无传感问题:
        1. 信念状态:整个信念状态空间包含物理状态的每个可能的集合。若问题P有N个状态,那么这个无传感问题就有2的N次方个状态,尽管很多状态是不可达的。
        2. 初始状态:显然是P中所有状态的集合,尽管有些状态Agent具有很多知识。
        3. 行动
        4. 转移模型
        5. 目标测试
        6. 路径开销
        7.  
    2. 有观察信息的搜索
    3. 求解部分可观察环境中的问题
    4. 部分可观察环境中的Agent
  • 联机搜索Agent和未知环境
    1. 联机搜索问题
    2. 联机搜索Agent
    3. 联机局部搜索
    4. 联机搜索中的学习
  • 本章小结

这篇关于《人工智能 一种现代方法》第三版 第4章 超越经典搜索 笔记摘录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096641

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

读书摘录《控糖革命》

又到了每周推荐时间,这周末给大家推荐一本书《控糖革命》。身体是革命的本钱,只有保持健康的身体,才能保证持久的生产力,希望我的读者都可以身体健康,青春永驻。 推荐前,首先申明在《控糖革命》一书中,作者提出了一些颇具争议的观点,这些观点并没有经过系统的科学论证,但这并不妨碍我们从中获取一些有益的控糖建议。作者通过分享作者的个人经验和研究,为我们提供了一种全新的饮食理念,帮助我们更好地控制血糖峰值

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识