爬虫案例5——爬取东方财富网的港股数据

2024-08-22 12:12

本文主要是介绍爬虫案例5——爬取东方财富网的港股数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介:个人学习分享,如有错误,欢迎批评指正

任务从东方财富网中爬取港股的代码,名称,最近价格,涨跌幅,今开,最高等数据

目标网页地址:https://data.eastmoney.com/bbsj/yjbb/603112.htmll

一、思路和过程

目标网页具体内容如下图:
​​​​
图1

我们的任务是将上图中港股的代码,名称,最近价格,涨跌幅,今开,最高等数据爬取下来。

1.URL和User-Agent的确定

1.1. URL确定
在这里插入图片描述

东方财富网具有一定的反爬程序,具体分析如下:
如上图,当我们切换上图框2中的页码时,上图框2里面url地址并没有变化,也就是说上图框1的URL地址作为我们的目标URL时,将得不到我们想要的图中间部分内容(代码,名称,最近价格等信息)。

怎么解决:
在这里插入图片描述
如上图,鼠标右键选择检查,进入源代码操作页面,点击框2的元素,然后点击右边的框3的三个点,选择框4的搜索,在框5中搜索框1的股票代码,框6为搜索的结果。

在这里插入图片描述

如上图,点击刚才的搜索结果框1,上面源代码部分会对框1的内容进行一个格式化展示,可以看到刚才搜索的股票代码在框2中有了一个呈现,在框2旁边的空白处点击鼠标右键,复制框3的链接地址,该地址就是包含我们想要的股票信息的正确URL地址

1.2.User-Agent确定
由于网页普遍具有反爬程序,不加修饰的直接访问网页可能会失败,所以第一步学会伪装自己。
如何伪装自己呢,可以通过找到正常访问网页时的访问状态,将自己的这次爬虫模拟成一次正常访问网页,因此我们的目标是找到正常访问网页时的User-Agent。User Agent中文名为用户代理,(简称 UA,它是一个特殊字符串头,使得服务器能够识别客户使用的操作系统及版本、CPU 类型、浏览器及版本、浏览器渲染引擎、浏览器语言、浏览器插件等)。User-Agent就是你访问网页的身份证明。具体操作如下:

如下图,首先打开目标(或任意)网页,然后点击鼠标右键后选择检查打开网页的HTML 页面。
在这里插入图片描述

如下图,在HTML 页面里面依次点击网络,然后任意点一条网络请求(如果没有显示任何网络请求可以点击网页左上角的刷新),然后选择标头,下拉列表找到User-Agent,User-Agent后面那段内容就是我们用来伪装自己的身份码。

在这里插入图片描述

2.发送GET请求获取网页内容

通过上面的步骤我们获得了
url = ‘https://34.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112406894991919602407_1720001154034&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&dect=1&wbp2u=|0|0|0|web&fid=f3&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152&_=1720001154170’

User-Agent:‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36 Edg/126.0.0.0’

接下来发起网页访问请求,代码如下:

import requests  # 引入requests库,用于发送HTTP请求
import jsonpath  # 引入jsonpath库,用于解析JSON数据
import json  # 引入json库,用于处理JSON数据
import re  # 引入re库,用于使用正则表达式
import math  # 引入math库,用于数学计算
import csv  # 引入csv库,用于CSV文件读写# 定义目标URL,获取股票数据的API接口地址
url = 'https://34.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112406894991919602407_1720001154034&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&dect=1&wbp2u=|0|0|0|web&fid=f3&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152&_=1720001154170'# 定义HTTP请求头,其中包括User-Agent信息,用于伪装成浏览器进行访问
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50'
}# 发送GET请求获取网页内容,并将响应内容解码为字符串格式
data = requests.get(url, headers=headers).content.decode()
print(data)

下图查看print结果,我们发现成功获得了网页相关的html表达,

在这里插入图片描述

3.分析网页内容

接下来对html进行解析获得我们目标内容。
这里,我们需要借助工具json.cn来辅助内容解析,

找到目标内容方法
首先,对刚才得到的结果,使用正则表达式从响应内容中提取出JSON数据,红框为解析后的数据。

# 使用正则表达式从响应内容中提取出JSON数据,'{"rc":.*}]}}'表示匹配以{"rc":开头,后面跟着任意字符,再后面跟着"}]"的字符串
json_data = re.findall('{"rc":.*}]}}', data)[0]
print(json_data)  # 打印提取出的JSON数据,检查内容是否正确

在这里插入图片描述

明确目标内容的位置。将上一步得到的JSON数据复制到json.cn中进行格式化

在这里插入图片描述

通过json.cn的可视化,我们可以清晰的看到f1、f2、f3等序号,而与之对应的则是我们需要的港股的代码,名称,最近价格,涨跌幅,今开等数据。

但是,我们发现上面只能取到单页的内容,而如下图整个网页有很多页。
在这里插入图片描述

对于上述问题,我们通过对比不同页面提取的URL,发现url地址不同的页码的url仅仅换了"pn="后面的数字,数字即对应页码。
在这里插入图片描述
首先,获取总页数,总页数在刚才获取的json格式结果中有,因此使用如下代码获取:

# 使用jsonpath从JSON数据中提取出总记录数,$..total表示从根节点开始,取出total字段的值
total = jsonpath.jsonpath(json_data, '$..total')[0]
print(json_data)  # 打印JSON数据,检查内容
print(total)  # 打印总记录数# 计算总页数,每页20条数据
page = math.ceil(total / 20)
print(page)  # 打印总页数

其次,进一步添加一个for循环来取得所有页的url地址,代码如下:

   for i in range(1, page + 1):# 构建每一页的URLnew_url = 'https://34.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112406894991919602407_1720001154034&pn={}&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&dect=1&wbp2u=|0|0|0|web&fid=f3&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152&_=1720001154170'.format(i)# 发送GET请求获取当前页码的网页内容,并将响应内容解码为字符串格式data = requests.get(new_url, headers=headers).content.decode()j += 1  # 更新页数计数器print('第{}页已保存'.format(j))  # 打印当前页数已保存

4.获取目标数据

上一步得到了目标数据的地址,接下来就是分别获得到目标数据,代码如下:

 # 使用正则表达式从响应内容中提取出JSON数据new_json_data = re.findall('{"rc":.*}]}}', data)[0]# 将JSON数据字符串转换为Python字典对象json_data = json.loads(new_json_data)# 依次使用jsonpath从JSON数据中提取出代码、名称、最新价、涨跌幅、今开、最高、最低、昨收、成交量、成交额等数据code = jsonpath.jsonpath(json_data, '$..f12')  # 代码name = jsonpath.jsonpath(json_data, '$..f14')  # 名称new_price = jsonpath.jsonpath(json_data, '$..f2')  # 最新价up_and_down = jsonpath.jsonpath(json_data, '$..f4')  # 涨跌幅today = jsonpath.jsonpath(json_data, '$..f17')  # 今开highest = jsonpath.jsonpath(json_data, '$..f15')  # 最高minimum = jsonpath.jsonpath(json_data, '$..f16')  # 最低yesterday = jsonpath.jsonpath(json_data, '$..f18')  # 昨收volume = jsonpath.jsonpath(json_data, '$..f5')  # 成交量(股)turnover = jsonpath.jsonpath(json_data, '$..f6')  # 成交额(港元)

5.保存数据

首先创建一个csv文件。


with open('港股.csv', 'a+', newline='', encoding='utf-8-sig') as f:writer = csv.writer(f)# 写入CSV文件的表头writer.writerow(['代码', '名称', '最新价', '涨跌幅', '今开', '最高', '最低', '昨收', '成交量(股)', '成交额(港元)'])j = 0  # 初始化页数计数器

其次,对得到的数据进行清洗和写入csv文件

# 数据清洗和写入CSV文件
for i, code in enumerate(code):try:# 检查数据是否为空(即8个字段是否都为'-')res = new_price[i] + up_and_down[i] + today[i] + highest[i] + minimum[i] + yesterday[i] + volume[i] + \turnover[i]if res == '-' * 8:continue  # 如果数据为空,则跳过该条记录# 将提取到的数据写入CSV文件writer.writerow([code, name[i], new_price[i], up_and_down[i], today[i], highest[i], minimum[i], yesterday[i],volume[i], turnover[i]])except:continue  # 如果发生异常,跳过该条记录

二、完整python代码

import requests  # 引入requests库,用于发送HTTP请求
import jsonpath  # 引入jsonpath库,用于解析JSON数据
import json  # 引入json库,用于处理JSON数据
import re  # 引入re库,用于使用正则表达式
import math  # 引入math库,用于数学计算
import csv  # 引入csv库,用于CSV文件读写# 定义目标URL,获取股票数据的API接口地址
url = 'https://34.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112406894991919602407_1720001154034&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&dect=1&wbp2u=|0|0|0|web&fid=f3&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152&_=1720001154170'# 定义HTTP请求头,其中包括User-Agent信息,用于伪装成浏览器进行访问
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50'
}# 发送GET请求获取网页内容,并将响应内容解码为字符串格式
data = requests.get(url, headers=headers).content.decode()
print(data)
# 使用正则表达式从响应内容中提取出JSON数据,'{"rc":.*}]}}'表示匹配以{"rc":开头,后面跟着任意字符,再后面跟着"}]"的字符串
json_data = re.findall('{"rc":.*}]}}', data)[0]
print(json_data)  # 打印提取出的JSON数据,检查内容是否正确# 将JSON数据字符串转换为Python字典对象
json_data = json.loads(json_data)# 使用jsonpath从JSON数据中提取出总记录数,$..total表示从根节点开始,取出total字段的值
total = jsonpath.jsonpath(json_data, '$..total')[0]
print(json_data)  # 打印JSON数据,检查内容
print(total)  # 打印总记录数# 计算总页数,每页20条数据
page = math.ceil(total / 20)
print(page)  # 打印总页数# 打开一个CSV文件,准备写入数据。 a+
with open('港股.csv', 'a+', newline='', encoding='utf-8-sig') as f:writer = csv.writer(f)# 写入CSV文件的表头writer.writerow(['代码', '名称', '最新价', '涨跌幅', '今开', '最高', '最低', '昨收', '成交量(股)', '成交额(港元)'])j = 0  # 初始化页数计数器# 遍历所有页码for i in range(1, page + 1):# 构建每一页的URLnew_url = 'https://34.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112406894991919602407_1720001154034&pn={}&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&dect=1&wbp2u=|0|0|0|web&fid=f3&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152&_=1720001154170'.format(i)# 发送GET请求获取当前页码的网页内容,并将响应内容解码为字符串格式data = requests.get(new_url, headers=headers).content.decode()j += 1  # 更新页数计数器print('第{}页已保存'.format(j))  # 打印当前页数已保存# 使用正则表达式从响应内容中提取出JSON数据new_json_data = re.findall('{"rc":.*}]}}', data)[0]# 将JSON数据字符串转换为Python字典对象json_data = json.loads(new_json_data)# 依次使用jsonpath从JSON数据中提取出代码、名称、最新价、涨跌幅、今开、最高、最低、昨收、成交量、成交额等数据code = jsonpath.jsonpath(json_data, '$..f12')  # 代码name = jsonpath.jsonpath(json_data, '$..f14')  # 名称new_price = jsonpath.jsonpath(json_data, '$..f2')  # 最新价up_and_down = jsonpath.jsonpath(json_data, '$..f4')  # 涨跌幅today = jsonpath.jsonpath(json_data, '$..f17')  # 今开highest = jsonpath.jsonpath(json_data, '$..f15')  # 最高minimum = jsonpath.jsonpath(json_data, '$..f16')  # 最低yesterday = jsonpath.jsonpath(json_data, '$..f18')  # 昨收volume = jsonpath.jsonpath(json_data, '$..f5')  # 成交量(股)turnover = jsonpath.jsonpath(json_data, '$..f6')  # 成交额(港元)# 数据清洗和写入CSV文件for i, code in enumerate(code):try:# 检查数据是否为空(即8个字段是否都为'-')res = new_price[i] + up_and_down[i] + today[i] + highest[i] + minimum[i] + yesterday[i] + volume[i] + \turnover[i]if res == '-' * 8:continue  # 如果数据为空,则跳过该条记录# 将提取到的数据写入CSV文件writer.writerow([code, name[i], new_price[i], up_and_down[i], today[i], highest[i], minimum[i], yesterday[i],volume[i], turnover[i]])except:continue  # 如果发生异常,跳过该条记录

结~~~

这篇关于爬虫案例5——爬取东方财富网的港股数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096236

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编