【Datawhale AI 夏令营】第四期 基于2B源大模型 微调

2024-08-22 10:12

本文主要是介绍【Datawhale AI 夏令营】第四期 基于2B源大模型 微调,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定位:代码复现贴
教程:https://datawhaler.feishu.cn/wiki/PLCHwQ8pai12rEkPzDqcufWKnDd

模型加载

model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True
)
  • AutoModelForCausalLM.from_pretrained(path):

    • 这是 transformers 库中的一种通用方法,用于从预训练模型路径(path)加载一个因果语言模型(Causal Language Model,CLM)。
    • 因果语言模型是一种序列到序列的模型,通常用于生成任务,例如自动完成或文本生成。
  • device_map="auto":

    • 该参数用于自动选择计算设备(如 GPU 或 CPU)来加载模型。设置为 "auto" 后,模型会根据可用资源自动映射到适当的设备。
  • torch_dtype=torch.bfloat16:

    • 这将模型的计算精度设置为 bfloat16(一种 16 位浮点格式),这通常用于加速计算和减少显存占用,同时保持数值稳定性。
  • trust_remote_code=True:

    • 这个参数表示信任远程代码,允许加载自定义模型结构。如果预训练模型所在的路径中包含自定义的模型定义文件(而不是标准的 transformers 库模型),这个选项允许这些自定义代码被执行。

输出的模型如下:
在这里插入图片描述

模型结构分析

Yuan 在 Transformer 的 Decoder 进行改进,引入了一种新的注意力机制 Localized Filtering-based Attention(LFA)

在这里插入图片描述

  • YuanForCausalLM:

    • 这是一个自定义的因果语言模型类,可能来自于远程代码定义。该模型包含了实际的 YuanModel 和一个 lm_head(语言模型的输出头)。
  • YuanModel:

    • 该模型是 YuanForCausalLM 的核心部分,包含嵌入层、多个解码器层(YuanDecoderLayer)、和一个归一化层。
  • embed_tokens:

    • 这是词嵌入层,用于将输入的标记(tokens)转换为高维向量表示。这里的词表大小为 135040,每个标记被嵌入到一个 2048 维的向量空间中。
  • layers:

    • 这是模型的主体,由 24YuanDecoderLayer 组成,每个解码器层包含自注意力机制、MLP(多层感知器)层、和归一化层。
  • YuanAttention:

    • 这是一个自注意力机制模块,包含了查询(q_proj)、键(k_proj)、值(v_proj)的线性投影,以及一个旋转嵌入(rotary_emb)和本地过滤模块(lf_gate)。
  • YuanMLP:

    • 这是一个 MLP 层,包含了向上和向下的线性投影(up_projdown_proj),以及一个激活函数 SiLU
  • YuanRMSNorm:

    • 这是一个归一化层,使用 RMSNorm(Root Mean Square Layer Normalization)来稳定训练过程。
  • lm_head:

    • 这是模型的输出层,用于将解码器层的输出转换为预测的词概率分布。它是一个线性层,输入维度为 2048,输出维度为 135040(与词表大小一致)。

配置Lora

from peft import LoraConfig, TaskType, get_peft_modelconfig = LoraConfig(task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False, # 训练模式r=8, # Lora 秩lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理lora_dropout=0.1# Dropout 比例
)

我们输出config,可以观测到其中的完整配置选项。

LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'k_proj', 'down_proj', 'o_proj', 'up_proj', 'gate_proj', 'v_proj', 'q_proj'},lora_alpha=32, lora_dropout=0.1, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, # <=== doralayer_replication=None, runtime_config=LoraRuntimeConfig(ephemeral_gpu_offload=False)) 

没想到后面还有一个use_dora的选项,碰巧之前浏览过这块,可以分享一下:

DoRA

首先对预训练模型的权重进行分解,将每个权重矩阵分解为幅度(magnitude)向量和方向(direction)矩阵

在微调过程中,DoRA使用LoRA进行方向性更新,只调整方向部分的参数,而保持幅度部分不变。这种方式可以减少需要调整的参数数量,提高微调的效率。

在这里插入图片描述

后面,我们构建一个 PeftModel并且查看对应的训练参数量占比:

# 构建PeftModel
model = get_peft_model(model, config)
model.print_trainable_parameters()

输出如下:

trainable params: 9,043,968 || all params: 2,097,768,448 || trainable%: 0.4311

总参数量为 2,097,768,448(~ 21亿参数),使用LoRA后只需要微调的参数量为 9,043,968(~904万参数),约占总参数量的0.4311%

但是后面微调还是爆了,所以稍微去除一点不太重要的微调目标模块(个人观点),但是肯定会损耗微调性能的。

config = LoraConfig(task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj"],inference_mode=False, # 训练模式r=4, # Lora 秩lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理lora_dropout=0.1# Dropout 比例
)

后续输出微调的参数占比为:

trainable params: 2,359,296 || all params: 2,091,083,776 || trainable%: 0.1128

当然,也降低了批处理大小 (牺牲速度):

# 设置训练参数
args = TrainingArguments(output_dir="./output/Yuan2.0-2B_lora_bf16",per_device_train_batch_size=6, # <===== 12gradient_accumulation_steps=1,logging_steps=1,save_strategy="epoch",num_train_epochs=3,learning_rate=5e-5,save_on_each_node=True,gradient_checkpointing=True,bf16=True
)

微调成功之后效果如下,即便增加了一些其他信息,也能保持相关的抽取。

在这里插入图片描述
(但是多次几次依旧容易翻车,会输出极其符合数据集分布的答案。)

数据集中的组织名和姓名是互斥的,且中国难识别归类到国籍。

在这里插入图片描述

关于更多的微调知识,感觉可以参考这篇知乎大佬的笔记:https://zhuanlan.zhihu.com/p/696837567

这篇关于【Datawhale AI 夏令营】第四期 基于2B源大模型 微调的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095981

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费