linux内核 时间同步机理分析笔记

2024-08-21 23:52

本文主要是介绍linux内核 时间同步机理分析笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内核时间管理的相关组件

1.1 clocksource 和 clock_event_device

1.1.1 简介

外部时钟设备的主要作用是提供精确的计时功能和定期产生中断的功能,内部把提供精确计时的功能抽象为clocksource对象,把定期产生中断的功能抽象为clock_event_device对象。                
                                《Linux内核精析》12.2.1 clocksource概述

                                《深⼊ LINUX 内核架构》P716

1.1.2 常见的外部时钟设备

TSC,HPET,ACPI PMT
                                《精通Linux内核开发》10.1 时间表⽰
                                《深⼊理解linux内核》P229

1.1.3 调试

/sys/devices/system/clocksource/
/sys/devices/system/clockevents/

1.2 timekeeping模块

1.2.1 简介

struct timekeeper定义在include/linux/timekeeper_internal.h中,保存了各种计时值。它是维护并操纵不同时间线的计时数据的主要数据结构,比如单调时间和原始时间
                                《Linux内核精析》12.3.2 timeval和timespec

1.2.2 数据结构

tk_core 

//kernel/time/timekeeping.c
/** The most important data for readout fits into a single 64 byte* cache line.*/
static struct {seqcount_t      seq; struct timekeeper   timekeeper;
} tk_core ____cacheline_aligned = {.seq = SEQCNT_ZERO(tk_core.seq),
};

 struct timekeeper;

//include/linux/timekeeper_internal.h
/*** struct timekeeper - Structure holding internal timekeeping values.* @tkr_mono:       The readout base structure for CLOCK_MONOTONIC* @tkr_raw:        The readout base structure for CLOCK_MONOTONIC_RAW* @xtime_sec:      Current CLOCK_REALTIME time in seconds* ......*/
struct timekeeper {struct tk_read_base tkr_mono;struct tk_read_base tkr_raw;u64         xtime_sec;unsigned long       ktime_sec;......
};

struct tk_read_base;

//include/linux/timekeeper_internal.h
/*** struct tk_read_base - base structure for timekeeping readout* @clock:  Current clocksource used for timekeeping.* @mask:   Bitmask for two's complement subtraction of non 64bit clocks* @cycle_last: @clock cycle value at last update* @mult:   (NTP adjusted) multiplier for scaled math conversion* @shift:  Shift value for scaled math conversion* @xtime_nsec: Shifted (fractional) nano seconds offset for readout* @base:   ktime_t (nanoseconds) base time for readout* @base_real:  Nanoseconds base value for clock REALTIME readout* ......*/struct tk_read_base {struct clocksource  *clock;u64         mask;u64         cycle_last;u32         mult;            /********* 时间同步的关键变量 ********/u32         shift;u64         xtime_nsec;ktime_t         base;u64         base_real;
};

1.2.3 struct timekeeper中时间变量的更新流程

tick_sched_timer();-> tick_sched_do_timer();-> tick_do_update_jiffies64();                                      -> update_wall_time();                                          -> timekeeping_advance();                                   -> accumulate_nsecs_to_secs();                          -> k->xtime_sec++;                                  -> timekeeping_update();                                -> tk_update_ktime_data(tk);                        -> tk->ktime_sec = seconds;                     -> tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);

2 计算时间的流逝

时钟源硬件会产生固定周期的物理信号送给外部时钟设备,时钟设备硬件可以记录收到了多少个周期的时钟信号。
内核代码读取时钟设备硬件记录的周期数,然后将其转换成时间,周期数转换成时间的算法如下:

static inline s64 clocksource_cyc2ns(u64 cycles, u32 mult, u32 shift)
{return ((u64) cycles * mult) >> shift;
}

时钟源硬件并不总是精确的,它们的频率可能不⼀样。这个时钟变化会导 致时间漂移。在这种情况下,可以调整mult变量来弥补这个时间漂移。
                                《精通Linux内核开发》10.2 硬件抽象

3 内核时间同步的关键变量:mult

应用层的时间同步程序如何修改内核的mult变量

应用层的时间同步程序(chronyd, phc2sys等)最终都会调用内核的do_adjtimex()来进行时间调整,这个流程会修改mult变量,如下:

do_adjtimex();-> __do_adjtimex();-> ntp_update_frequency();-> tick_length     += new_base - tick_length_base;-> timekeeping_advance();-> timekeeping_adjust();    //Adjust the multiplier to correct NTP error-> tk->ntp_tick = ntp_tick_length();-> mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -tk->xtime_remainder, tk->cycle_interval);-> timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);-> tk->tkr_mono.mult += mult_adj;

4 抓取实际的内核数据进行验证

4.1 查看当前clocksource的频率

当前系统的clocksource是TSC,如下:

# cat /sys/devices/system/clocksource/clocksource0/current_clocksource 
tsc

TSC时钟源的频率是 2419.200 MHz,信息如下:

# dmesg | grep -i TSC
[    0.000000] tsc: Detected 2400.000 MHz processor
[    0.000000] tsc: Detected 2419.200 MHz TSC
[    0.044651] TSC deadline timer available
[    0.159823] clocksource: tsc-early: mask: 0xffffffffffffffff max_cycles: 0x22df1149949, max_idle_ns: 440795312789 ns
[    0.778100] clocksource: Switched to clocksource tsc-early
[    0.805072] clocksource: tsc: mask: 0xffffffffffffffff max_cycles: 0x22df1149949, max_idle_ns: 440795312789 ns
[    0.805086] clocksource: Switched to clocksource tsc

4.2 使用kprobe模块抓取内核的mult和shift变量

4.2.1 查看tk_core结构体对象的地址

数据结构关系如下,要想抓取mult和shift变量,我们需要首先获取tk_core。

通过/proc/kallsyms文件中查看到的tk_core地址为0xffffffffae4a0100,信息如下:

# cat /proc/kallsyms | grep tk_core
ffffffffae4a0100 b tk_core

4.2.2 实现kprobe模块

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>#include <linux/timekeeper_internal.h>
#include "your_kernel_src/kernel/time/tick-internal.h"
#include "your_kernel_src/kernel/time/ntp_internal.h"
#include "your_kernel_src/kernel/time/timekeeping_internal.h"#define MAX_SYMBOL_LEN  64
static char symbol[MAX_SYMBOL_LEN] = "do_adjtimex";
module_param_string(symbol, symbol, sizeof(symbol), 0644);struct test_tk_core {seqcount_t      seq;struct timekeeper   timekeeper;
}; struct test_tk_core * tk_core = 0xffffffffae4a0100;   /* /proc/kallsyms中查看到的tk_core地址 *//* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {.symbol_name    = symbol,
};/* kprobe pre_handler: called just before the probed instruction is executed */
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{printk("--------------- clocksource name:%s, mult=%u, shift=%u \n", tk_core->timekeeper.tkr_mono.clock->name,tk_core->timekeeper.tkr_mono.mult,tk_core->timekeeper.tkr_mono.shift);/* A dump_stack() here will give a stack backtrace */return 0;
}/* kprobe post_handler: called after the probed instruction is executed */
static void handler_post(struct kprobe *p, struct pt_regs *regs,unsigned long flags)
{printk("--------------- clocksource name:%s, mult=%u, shift=%u \n", tk_core->timekeeper.tkr_mono.clock->name,tk_core->timekeeper.tkr_mono.mult,tk_core->timekeeper.tkr_mono.shift);
}static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{pr_info("fault_handler: p->addr = 0x%p, trap #%dn", p->addr, trapnr);/* Return 0 because we don't handle the fault. */return 0;
}static int __init kprobe_init(void)
{int ret;kp.pre_handler = handler_pre;kp.post_handler = handler_post;//kp.fault_handler = handler_fault;ret = register_kprobe(&kp);if (ret < 0) {pr_err("register_kprobe failed, returned %d\n", ret);return ret;}pr_info("Planted kprobe at %p\n", kp.addr);return 0;
}static void __exit kprobe_exit(void)
{unregister_kprobe(&kp);pr_info("kprobe at %p unregistered\n", kp.addr);
}module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");

将上面代码编译成内核模块(.ko),然后insmod安装即可。

4.3 对kprobe模块抓取到的数据进行分析

4.3.1 本机时间准确时

本机时间准确时,使用dmesg看到kprobe模块抓取的信息如下:

[21821.544394] --------------- clocksource name:tsc, mult=6935128, shift=24 
[21821.544395] --------------- clocksource name:tsc, mult=6935128, shift=24

时钟频率是2419.200 MHz

2419200000 * 6935128 >> 24 = 1000 014 642ns

4.3.2 将本机时间调慢7分钟

将本机时间比标准时间调慢7分钟,使用dmesg看到kprobe模块抓取的信息如下:

[20967.796255] --------------- clocksource name:tsc, mult=7628528, shift=24 
[20967.796257] --------------- clocksource name:tsc, mult=7628528, shift=24

2419200000 * 7628528 >> 24 = 1099 999 841ns

4.3.3 将本机时间调快6分钟

将本机时间比标准时间调快6分钟,使用dmesg看到kprobe模块抓取的信息如下:

[21149.432284] --------------- clocksource name:tsc, mult=6241523, shift=24 
[21149.432288] --------------- clocksource name:tsc, mult=6241523, shift=24

2419200000 * 6241523 >> 24 = 899 999 883ns

5 总结

当linux内核记录的时间比标准时间慢时,时间同步程序会修改内核的mult变量,让内核时间走的快一些;
当linux内核记录的时间比标准时间快时,时间同步程序会修改内核的mult变量,让内核时间走的慢一些。

扩展,时间同步的时间源

PTP, PPS: Linux时间同步(PPS、PTP、chrony)分析笔记_linux pps 授时-CSDN博客

这篇关于linux内核 时间同步机理分析笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094648

相关文章

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重