linux内核 时间同步机理分析笔记

2024-08-21 23:52

本文主要是介绍linux内核 时间同步机理分析笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 内核时间管理的相关组件

1.1 clocksource 和 clock_event_device

1.1.1 简介

外部时钟设备的主要作用是提供精确的计时功能和定期产生中断的功能,内部把提供精确计时的功能抽象为clocksource对象,把定期产生中断的功能抽象为clock_event_device对象。                
                                《Linux内核精析》12.2.1 clocksource概述

                                《深⼊ LINUX 内核架构》P716

1.1.2 常见的外部时钟设备

TSC,HPET,ACPI PMT
                                《精通Linux内核开发》10.1 时间表⽰
                                《深⼊理解linux内核》P229

1.1.3 调试

/sys/devices/system/clocksource/
/sys/devices/system/clockevents/

1.2 timekeeping模块

1.2.1 简介

struct timekeeper定义在include/linux/timekeeper_internal.h中,保存了各种计时值。它是维护并操纵不同时间线的计时数据的主要数据结构,比如单调时间和原始时间
                                《Linux内核精析》12.3.2 timeval和timespec

1.2.2 数据结构

tk_core 

//kernel/time/timekeeping.c
/** The most important data for readout fits into a single 64 byte* cache line.*/
static struct {seqcount_t      seq; struct timekeeper   timekeeper;
} tk_core ____cacheline_aligned = {.seq = SEQCNT_ZERO(tk_core.seq),
};

 struct timekeeper;

//include/linux/timekeeper_internal.h
/*** struct timekeeper - Structure holding internal timekeeping values.* @tkr_mono:       The readout base structure for CLOCK_MONOTONIC* @tkr_raw:        The readout base structure for CLOCK_MONOTONIC_RAW* @xtime_sec:      Current CLOCK_REALTIME time in seconds* ......*/
struct timekeeper {struct tk_read_base tkr_mono;struct tk_read_base tkr_raw;u64         xtime_sec;unsigned long       ktime_sec;......
};

struct tk_read_base;

//include/linux/timekeeper_internal.h
/*** struct tk_read_base - base structure for timekeeping readout* @clock:  Current clocksource used for timekeeping.* @mask:   Bitmask for two's complement subtraction of non 64bit clocks* @cycle_last: @clock cycle value at last update* @mult:   (NTP adjusted) multiplier for scaled math conversion* @shift:  Shift value for scaled math conversion* @xtime_nsec: Shifted (fractional) nano seconds offset for readout* @base:   ktime_t (nanoseconds) base time for readout* @base_real:  Nanoseconds base value for clock REALTIME readout* ......*/struct tk_read_base {struct clocksource  *clock;u64         mask;u64         cycle_last;u32         mult;            /********* 时间同步的关键变量 ********/u32         shift;u64         xtime_nsec;ktime_t         base;u64         base_real;
};

1.2.3 struct timekeeper中时间变量的更新流程

tick_sched_timer();-> tick_sched_do_timer();-> tick_do_update_jiffies64();                                      -> update_wall_time();                                          -> timekeeping_advance();                                   -> accumulate_nsecs_to_secs();                          -> k->xtime_sec++;                                  -> timekeeping_update();                                -> tk_update_ktime_data(tk);                        -> tk->ktime_sec = seconds;                     -> tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);

2 计算时间的流逝

时钟源硬件会产生固定周期的物理信号送给外部时钟设备,时钟设备硬件可以记录收到了多少个周期的时钟信号。
内核代码读取时钟设备硬件记录的周期数,然后将其转换成时间,周期数转换成时间的算法如下:

static inline s64 clocksource_cyc2ns(u64 cycles, u32 mult, u32 shift)
{return ((u64) cycles * mult) >> shift;
}

时钟源硬件并不总是精确的,它们的频率可能不⼀样。这个时钟变化会导 致时间漂移。在这种情况下,可以调整mult变量来弥补这个时间漂移。
                                《精通Linux内核开发》10.2 硬件抽象

3 内核时间同步的关键变量:mult

应用层的时间同步程序如何修改内核的mult变量

应用层的时间同步程序(chronyd, phc2sys等)最终都会调用内核的do_adjtimex()来进行时间调整,这个流程会修改mult变量,如下:

do_adjtimex();-> __do_adjtimex();-> ntp_update_frequency();-> tick_length     += new_base - tick_length_base;-> timekeeping_advance();-> timekeeping_adjust();    //Adjust the multiplier to correct NTP error-> tk->ntp_tick = ntp_tick_length();-> mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -tk->xtime_remainder, tk->cycle_interval);-> timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);-> tk->tkr_mono.mult += mult_adj;

4 抓取实际的内核数据进行验证

4.1 查看当前clocksource的频率

当前系统的clocksource是TSC,如下:

# cat /sys/devices/system/clocksource/clocksource0/current_clocksource 
tsc

TSC时钟源的频率是 2419.200 MHz,信息如下:

# dmesg | grep -i TSC
[    0.000000] tsc: Detected 2400.000 MHz processor
[    0.000000] tsc: Detected 2419.200 MHz TSC
[    0.044651] TSC deadline timer available
[    0.159823] clocksource: tsc-early: mask: 0xffffffffffffffff max_cycles: 0x22df1149949, max_idle_ns: 440795312789 ns
[    0.778100] clocksource: Switched to clocksource tsc-early
[    0.805072] clocksource: tsc: mask: 0xffffffffffffffff max_cycles: 0x22df1149949, max_idle_ns: 440795312789 ns
[    0.805086] clocksource: Switched to clocksource tsc

4.2 使用kprobe模块抓取内核的mult和shift变量

4.2.1 查看tk_core结构体对象的地址

数据结构关系如下,要想抓取mult和shift变量,我们需要首先获取tk_core。

通过/proc/kallsyms文件中查看到的tk_core地址为0xffffffffae4a0100,信息如下:

# cat /proc/kallsyms | grep tk_core
ffffffffae4a0100 b tk_core

4.2.2 实现kprobe模块

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>#include <linux/timekeeper_internal.h>
#include "your_kernel_src/kernel/time/tick-internal.h"
#include "your_kernel_src/kernel/time/ntp_internal.h"
#include "your_kernel_src/kernel/time/timekeeping_internal.h"#define MAX_SYMBOL_LEN  64
static char symbol[MAX_SYMBOL_LEN] = "do_adjtimex";
module_param_string(symbol, symbol, sizeof(symbol), 0644);struct test_tk_core {seqcount_t      seq;struct timekeeper   timekeeper;
}; struct test_tk_core * tk_core = 0xffffffffae4a0100;   /* /proc/kallsyms中查看到的tk_core地址 *//* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {.symbol_name    = symbol,
};/* kprobe pre_handler: called just before the probed instruction is executed */
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{printk("--------------- clocksource name:%s, mult=%u, shift=%u \n", tk_core->timekeeper.tkr_mono.clock->name,tk_core->timekeeper.tkr_mono.mult,tk_core->timekeeper.tkr_mono.shift);/* A dump_stack() here will give a stack backtrace */return 0;
}/* kprobe post_handler: called after the probed instruction is executed */
static void handler_post(struct kprobe *p, struct pt_regs *regs,unsigned long flags)
{printk("--------------- clocksource name:%s, mult=%u, shift=%u \n", tk_core->timekeeper.tkr_mono.clock->name,tk_core->timekeeper.tkr_mono.mult,tk_core->timekeeper.tkr_mono.shift);
}static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{pr_info("fault_handler: p->addr = 0x%p, trap #%dn", p->addr, trapnr);/* Return 0 because we don't handle the fault. */return 0;
}static int __init kprobe_init(void)
{int ret;kp.pre_handler = handler_pre;kp.post_handler = handler_post;//kp.fault_handler = handler_fault;ret = register_kprobe(&kp);if (ret < 0) {pr_err("register_kprobe failed, returned %d\n", ret);return ret;}pr_info("Planted kprobe at %p\n", kp.addr);return 0;
}static void __exit kprobe_exit(void)
{unregister_kprobe(&kp);pr_info("kprobe at %p unregistered\n", kp.addr);
}module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");

将上面代码编译成内核模块(.ko),然后insmod安装即可。

4.3 对kprobe模块抓取到的数据进行分析

4.3.1 本机时间准确时

本机时间准确时,使用dmesg看到kprobe模块抓取的信息如下:

[21821.544394] --------------- clocksource name:tsc, mult=6935128, shift=24 
[21821.544395] --------------- clocksource name:tsc, mult=6935128, shift=24

时钟频率是2419.200 MHz

2419200000 * 6935128 >> 24 = 1000 014 642ns

4.3.2 将本机时间调慢7分钟

将本机时间比标准时间调慢7分钟,使用dmesg看到kprobe模块抓取的信息如下:

[20967.796255] --------------- clocksource name:tsc, mult=7628528, shift=24 
[20967.796257] --------------- clocksource name:tsc, mult=7628528, shift=24

2419200000 * 7628528 >> 24 = 1099 999 841ns

4.3.3 将本机时间调快6分钟

将本机时间比标准时间调快6分钟,使用dmesg看到kprobe模块抓取的信息如下:

[21149.432284] --------------- clocksource name:tsc, mult=6241523, shift=24 
[21149.432288] --------------- clocksource name:tsc, mult=6241523, shift=24

2419200000 * 6241523 >> 24 = 899 999 883ns

5 总结

当linux内核记录的时间比标准时间慢时,时间同步程序会修改内核的mult变量,让内核时间走的快一些;
当linux内核记录的时间比标准时间快时,时间同步程序会修改内核的mult变量,让内核时间走的慢一些。

扩展,时间同步的时间源

PTP, PPS: Linux时间同步(PPS、PTP、chrony)分析笔记_linux pps 授时-CSDN博客

这篇关于linux内核 时间同步机理分析笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094648

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更