[16 使用C++11开发一个简单的通信程序(Proactor模式)] 16.4 C++11结合asio实现一个简单的服务端程序

本文主要是介绍[16 使用C++11开发一个简单的通信程序(Proactor模式)] 16.4 C++11结合asio实现一个简单的服务端程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求:服务端监听某个端口,允许多个客户端连接上来,打印客户端发来的数据。

(1)能接收多个客户端。

考虑用一个map来管理socket,每次有新连接时,服务器自动分配一个连接号给这个连接,以方便管理。socket不允许复制,不能直接将socket放到map里,需要外面封装一层。

(2)打印客户端的数据,需要异步读数据。

为简化操作,将socket封装到一个读/写事件处理器中。这时采用同步写,异步读。

读/写事件处理器的实现如下:

#include <array>
#include <functional>
#include <iostream>
using namespace std;#include <boost/asio.hpp>
using namespace boost::asio;
using namespace boost::asio::ip;
using namespace boost;const int MAX_IP_PACK_SIZE = 65536;
const int HEAD_LEN = 4;class RWHandler
{
public:RWHandler(io_service& ios) : m_sock(ios){}~RWHandler(){}void HandleRead(){// 异步读async_read(m_sock, buffer(m_buff), transfer_at_least(HEAD_LEN),[this](const boost::system::error_code& ec, size_t size) {if (ec != nullptr) {HandleError(ec);return;}// 打印客户端发来的数据cout << m_buff.data() + HEAD_LEN << endl;    // 循环发起异步读事件HandleRead();});}void HandleWrite(char* data, int len) {boost::system::error_code ec;// 同步写write(m_sock, buffer(data, len), ec);if (ec != nullptr) {HandleError(ec);}}tcp::socket& GetSocket(){return m_sock;}void CloseSocket(){boost::system::error_code ec;m_sock.shutdown(tcp::socket::shutdown_send, ec);m_sock.close(ec);}void SetConnId(int connId){m_connId = connId;}int GetConnId() const{return m_connId;}void SetCallBackError(std::function<void(int)> f) {m_callbackError = f;}private:void HandlerError(const boost::system::error_code& ec){CloseSocket();cout << ec.message << endl;if (m_callbackError) {m_callbackError(m_connId);}}private:tcp::socket m_sock;//固定长度的读缓冲区std::array<char, MAX_IP_PACK_SIZE> m_buff;int m_connId;std::function<void(int)> m_callbackError;
};

异步操作对象m_socket的生命周期没有处理,socket可能在异步回调返回之前已经释放,这时需要通过shared_from_this来保证对象的生命周期。

有了RWHandler后,服务端接受新连接后的读/写操作就交给RWHandler,服务端Server的实现如下:

#include <boost/asio/buffer.hpp>
#include <unordered_map>
#include <numeric>
#include "Message.hpp"
#include "RWHandler.hpp"const int MaxConnectionNum = 65536;
const int MaxRecvSize = 65536;class Server
{
public:Server(io_service& ios, short port) : m_ios(ios), m_acceptor(ios, tcp::endpoint(tcp::v4(), port), m_cnnIdPool(MaxConnectionNum)){m_cnnIdPool.resize(MaxConnectionNum);// 用顺序递增的值赋值指定范围内的元素std::iota(m_cnnIdPool.begin(), m_cnnIdPool.end(), 1);}~Server(){}void Accept(){cout << "Start Listening..." << endl;std::shared_ptr<RWHandler> handler = CreateHandler();m_acceptor.async_accept(handler->GetSocket(), [this, handler](const boost::system::error_code& error)if (error) {cout << "error: " << error.message() << endl;HandleAcpError(handle, error);return ;}m_handlers.insert(std::make_pair(handler->GetConnId(), handler));cout << "current connect count:" << m_handlers.size() << endl;// 异步读handler->HandleRead();// 等待下一个连接Accept();});}private:void HandlerAcpError(std::shared_ptr<RWHandler> eventHandler, const boost::system::error_code& error){cout << "Error: " << error.message() << endl;// 关闭socket,移除读写事件处理器eventHandler->CloseSocket();StopAccept();}void StopAccept(){boost::system::error_code ec;m_acceptor.cancel(ec);m_acceptor.close(ec);m_ios.stop();}std::shared_ptr<RWHandler> CreateHandler() {int connId = m_cnnIdPool.front();m_cnnIdPool.pop_front();std::shared_ptr<RWHandler> handler = std::make_shared<RWHandler>(m_ios);handler->SetConnId(connId);handler->SetCallBackError([this](int connId){RecyclConnid(connId);});}void RecyclConnid(int connId){auto it = m_handlers.find(connId);if (it != m_handlers.end()) {m_handlers.erase();}cout << "current connect count:" << m_handlers.size() << endl;m_cnnIdPool.push_back(connId);}private:io_service& m_ios;tcp::acceptor m_acceptor;std::unordered_map<int, std::shared_ptr<RWHandler>> m_handlers;list<int> m_cnnIdPool;
};

Server会管理所有连接的客户端。

测试程序如下:

void TestServer()
{io_service ios;Server server(ios, 9900); server.Accept();ios.run();
}

循环发起异步读事件会保证io_service::run一直运行。

这篇关于[16 使用C++11开发一个简单的通信程序(Proactor模式)] 16.4 C++11结合asio实现一个简单的服务端程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093725

相关文章

Java中的ConcurrentBitSet使用小结

《Java中的ConcurrentBitSet使用小结》本文主要介绍了Java中的ConcurrentBitSet使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、核心澄清:Java标准库无内置ConcurrentBitSet二、推荐方案:Eclipse

Go语言结构体标签(Tag)的使用小结

《Go语言结构体标签(Tag)的使用小结》结构体标签Tag是Go语言中附加在结构体字段后的元数据字符串,用于提供额外的属性信息,这些信息可以通过反射在运行时读取和解析,下面就来详细的介绍一下Tag的使... 目录什么是结构体标签?基本语法常见的标签用途1.jsON 序列化/反序列化(最常用)2.数据库操作(

Java中ScopeValue的使用小结

《Java中ScopeValue的使用小结》Java21引入的ScopedValue是一种作用域内共享不可变数据的预览API,本文就来详细介绍一下Java中ScopeValue的使用小结,感兴趣的可以... 目录一、Java ScopedValue(作用域值)详解1. 定义与背景2. 核心特性3. 使用方法

spring中Interceptor的使用小结

《spring中Interceptor的使用小结》SpringInterceptor是SpringMVC提供的一种机制,用于在请求处理的不同阶段插入自定义逻辑,通过实现HandlerIntercept... 目录一、Interceptor 的核心概念二、Interceptor 的创建与配置三、拦截器的执行顺

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用