最强数学模型现世,阿里千问新模型——Qwen2-Math

2024-08-21 12:44

本文主要是介绍最强数学模型现世,阿里千问新模型——Qwen2-Math,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题:最强数学模型现世!阿里千问新模型——Qwen2-Math

介绍:

近日,阿里通义团队发布了新一代数学模型Qwen2-Math。Qwen2-Math包含1.5B、7B、72B三个参数规模的基础模型和指令微调模型。其数学能力显著超越了此前的开源模型,甚至超过了闭源模型(如GPT-4o),成为当前最先进的数学专项模型之一。

c9c49eaffa82ffdf2380696b05338ad4.jpeg

Qwen2-Math包含1.5B、7B、72B三个参数规模的基础模型和指令微调模型,其中,基础模型72B版本在备受瞩目的MATH数据集上表现出色,相较于GPT-4o,它额外斩获了7分,这一优势相当于提升了9.6%的准确率。

17d63aaa7c5fa96c801fe5add2304c32.jpeg

为了考验Qwen2-Math基础模型的数学能力,团队设计了一套数学试卷,该试卷融合了三个广泛应用的英语数学基准测试集——GSM8K(针对小学数学)、Math以及MMLU-STEM,同时纳入了三个专为中国学生设计的数学基准——CMATH、高考数学小题以及高考数学大题。根据这些基准测试集的得分结果,通义千问的Qwen2-Math基础模型展现出了显著的领先优势,成绩“遥遥领先”于其他同类模型。

20d28e51217637103cd6e92d6f043868.jpeg

指令调优模型Qwen2-Math-Instruct是阿里通义团队在Qwen2大语言模型基础上,专为数学解题领域开发的进阶模型。包含多个参数规模,如72B、7B、1.5B等,其中72B版本为旗舰款。

指令微调模型基于Qwen2-Math-72B训练一个数学专用的奖励模型,用于评估模型的数学解题表现。将密集的奖励信号与指示模型是否正确回答问题的二元信号结合,用作学习标签。通过拒绝采样构建监督微调(SFT)数据,对基础模型进行指令微调。在SFT模型基础上,使用GRPO(一种强化学习方法)进一步优化模型,提升其数学解题的准确性和效率。

f6394f286be02ae888e695006a936136.jpeg

在权威的数学基准评测集MATH上,在MATH数据集上进行的零样本测试里,参数量为1.5B的Instruct模型以70%的准确率,超越了参数量达到70B的Llama 3.1模型。

Qwen2-Math-72B-Instruct以84%的准确率处理了代数、几何、计数与概率、数论等多种数学问题,这一成绩超越了GPT-4.0、Claude-3.5-Sonnet、Gemini-1.5-Pro和Llama-3.1-405B等主流模型。

bc8a79d94e50cd7a86e9a3637dd26293.jpega778e5a194f06603c9d1f222ee4bfbf6.jpeg

Qwen2-Math-Instruct模型已显示出对部分竞赛级简单试题的解答能力。在AIME 24的试题集中,利用rm@256策略,其72B-Instruct版本脱颖而出,正确解答了11道题目。相比之下,诸如GPT-4 Turbo、Claude 3 Opus以及Gemini 1.5 PRo等尖端模型,它们的表现均显得逊色,仅能解答出一两道题目。尤为值得一提的是,即便是Qwen2-Math系列中规模最小的1.5B版本,在相同的rm@256条件下,也成功解答了五道题目,这一成绩已超越了前面提到的所有模型。

尽管Gemini 1.5 Pro特别推出了针对数学任务的优化版本,但在面对这些试题时,其解答正确的题目数量仍停留在七八道左右。而Qwen2-Math-72B-Instruct则以其出色的表现,成为了首个解答题目数量达到两位数(即超过十道)的模型,这无疑再次证明了其在数学解题领域的领先地位。

ed1980367ad2abd08c8a672ebb1e6241.jpeg

Qwen2-Math模型答题展示

f699fb4ecf6391e7e739101ff71ca737.jpeg

d00c550c73bad0eb05e8bd55d6757440.jpeg

目前Qwen2-Math主要支持英文,中英双语和多语言模型正在开发中,多语言支持提上日程。

Qwen2-Math团队在训练模型时采用了高质量的数学专用语料库,并通过严格的评估验证了模型在数学解题方面的卓越能力,未来,团队将继续优化模型的性能,包括但不限于提高解题准确率、加快解题速度、扩展解题范围等。

这篇关于最强数学模型现世,阿里千问新模型——Qwen2-Math的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093194

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者