吴恩达教授《AI for everyone》课程第一周——机器学习

2024-08-21 11:18

本文主要是介绍吴恩达教授《AI for everyone》课程第一周——机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频地址:https://www.coursera.org/learn/ai-for-everyone/lecture/5TPFo/machine-learning

英文字幕:

The rise of AI has been largely driven by one tool in AI called machine learning. In this video, you'll learn what is machine learning, so that by the end, you hope we will start thinking how machine learning might be applied to your company or to your industry. The most commonly used type of machine learning is a type of AI that learns A to B, or input to output mappings. This is called supervised learning. Let's see some examples. If the input A is an email and the output B one is email spam or not, zero one. Then this is the core piece of AI used to build a spam filter. Or if the input is an audio clip, and the AI's job is to output the text transcript, then this is speech recognition. More examples, if you want to input English and have it output a different language, Chinese, Spanish, something else, then this is machine translation. Or the most lucrative form of supervised learning, of this type of machine learning maybe be online advertising, where all the large online ad platforms have a piece of AI that inputs some information about an ad, and some information about you, and tries to figure out, will you click on this ad or not? By showing you the ads you're most likely to click on, this turns out to be very lucrative. Maybe not the most inspiring application, but certainly having a huge economic impact today. Or if you want to build a self-driving car, one of the key pieces of AI is in the AI that takes as input an image, and some information from their radar, or from other sensors, and output the position of other cars, so your self-driving car can avoid the other cars. Or in manufacturing. I've actually done a lot of work in manufacturing where you take as input a picture of something you've just manufactured, such as a picture of a cell phone coming off the assembly line. This is a picture of a phone, not a picture taken by a phone, and you want to output, is there a scratch, or is there a dent, or some other defects on this thing you've just manufactured? And this is visual inspection which is helping manufacturers to reduce or prevent defects in the things that they're making. This set of AI called supervised learning, just learns input to output, or A to B mappings. On one hand, input to output, A to B it seems quite limiting. But when you find a right application scenario, this can be incredibly valuable. Now, the idea of supervised learning has been around for many decades. But it's really taken off in the last few years. Why is this? Well, my friends asked me, "Hey Andrew, why is supervised learning taking off now?" There's a picture I draw for them. I want to show you this picture now, and you may be able to draw this picture for others that ask you the same question as well. Let's say on the horizontal axis you plot the amount of data you have for a task. So, for speech recognition, this might be the amount of audio data and transcripts you have. In lot of industries, the amount of data you have access to has really grown over the last couple of decades. Thanks to the rise of the Internet, the rise of computers. A lot of what used to be say pieces of paper, are now instead recorded on a digital computer. So, we've just been getting more and more data. Now, let's say on the vertical axis you plot the performance of an AI system. It turns out that if you use a traditional AI system, then the performance would grow like this, that as you feed in more data is performance gets a bit better. But beyond a certain point it did not get that much better. So it's as if your speech recognition system did not get that much more accurate, or your online advertising system didn't get that much more accurate that's showing the most relevant ads, even as you show the more data. AI has really taken off recently due to the rise of neural networks and deep learning. I'll define these terms more precise in later video, so don't worry too much about what it means for now. But with modern AI, with neural networks and deep learning, what we saw was that, if you train a small neural network, then the performance looks like this, where as you feed them more data, performance keeps getting better for much longer. If you train a even slightly larger neural network, say medium-sized neural net, then the performance may look like that. If you train a very large neural network, then the performance just keeps on getting better and better. For applications like speech recognition, online advertising, building self-driving car, where having a high-performance, highly accurate, say speech recognition system is important, enable these AI systems get much better, and make speech recognition products much more acceptable to users, much more valuable to companies and to users. Now, a few couple of implications of this figure. If you want the best possible levels of performance, your performance to be up here, to hit this level of performance, then you need two things: One is, it really helps to have a lot of data. So that's why sometimes you hear about big data. Having more data almost always helps. The second thing is, you want to be able to train a very large neural network. So, the rise of fast computers, including Moore's law, but also the rise of specialized processors such as graphics processing units or GPUs, which you'll hear more about in a later video, has enabled many companies, not just a giant tech companies, but many many other companies to be able to train large neural nets on a large enough amount of data in order to get very good performance and drive business value. The most important idea in AI has been machine learning, has basically supervised learning, which means A to B, or input to output mappings. What enables it to work really well is data. In the next video, let's take a look at what is the data and what data you might already have? And how to think about feeding this into AI systems. Let's go on to the next video.

 中文字幕:

人工智能的兴起主要是由人工智能中的一种称为机器学习的工具驱动的。在本视频中,您将了解什么是机器学习,因此最终,您希望我们将开始考虑如何将机器学习应用于您的公司或您的行业。最常用的机器学习类型是一种学习A到B或输入到输出映射的AI。这称为监督学习。我们来看一些例子。如果输入A是电子邮件而输出B是电子邮件垃圾邮件,则为零。然后,这是用于构建垃圾邮件过滤器的核心AI。或者,如果输入是音频剪辑,并且AI的工作是输出文本记录,则这是语音识别。更多的例子,如果你想输入英语并输出不同的语言,中文,西班牙语等等,那么这就是机器翻译。或者最有利可图的监督学习形式,这种类型的机器学习可能是在线广告,其中所有大型在线广告平台都有一块人工智能输入一些广告信息,以及一些关于你的信息,并试图想象你会点击这个广告吗?通过向您展示您最有可能点击的广告,结果证明这是非常有利可图的。也许不是最鼓舞人心的应用程序,但今天肯定会产生巨大的经济影响。或者,如果你想要制造一辆自动驾驶汽车,人工智能的一个关键部分就是在人工智能中输入图像,从雷达或其他传感器获取一些信息,并输出其他车辆的位置,所以你的自动驾驶汽车可以避开其他车。或者在制造业。我实际上已经在制造方面做了很多工作,你可以把你刚刚制造的东西的图片作为输入,例如手机下线的照片。这是一张手机的照片,而不是手机拍的照片,你想要输出,是否有划痕,或者是否有凹痕,或者你刚制造的这个东西还有其它缺陷?这是视觉检查,帮助制造商减少或防止他们正在制造的东西的缺陷。这组AI称为监督学习,只是学习输出到输出,或A到B映射。一方面,输入到输出,A到B似乎非常有限。但是当您找到合适的应用场景时,这可能非常有价值。现在,监督学习的想法已经存在了几十年。但它在过去几年里真的起飞了。为什么是这样?好吧,我的朋友问我,“嘿安德鲁,为什么现在有人监督学习起飞?”有一张我为他们画的照片。我现在想给你看这张照片,你也可以把这张照片画给那些问你同样问题的人。假设您在水平轴上绘制了任务的数据量。因此,对于语音识别,这可能是您拥有的音频数据和成绩单的数量。在许多行业中,您可以访问的数据量在过去几十年中确实增长了。由于互联网的兴起,计算机的兴起。过去常被说成纸的很多东西现在被记录在数字计算机上。所以,我们刚刚获得越来越多的数据。现在,让我们说在纵轴上绘制AI系统的性能。事实证明,如果你使用传统的AI系统,那么性能会像这样增长,因为当你输入更多数据时,性能会变得更好。但是超过某一点它没有那么好。因此,就好像您的语音识别系统没有那么准确,或者您的在线广告系统没有那么准确,显示最相关的广告,即使您显示的数据更多。由于神经网络和深度学习的兴起,人工智能最近真正起飞。我将在以后的视频中更准确地定义这些术语,所以不要过于担心它现在意味着什么。但是对于现代AI,神经网络和深度学习,我们看到的是,如果你训练一个小型神经网络,那么性能就像这样,在你为它们提供更多数据时,性能会持续变得更好。如果你训练一个更大的神经网络,比如说中型神经网络,那么性能可能就像那样。如果你训练一个非常大的神经网络,那么性能就会越来越好。对于语音识别,在线广告,构建自动驾驶汽车等应用,具有高性能,高精度的语音识别系统非常重要,使这些AI系统变得更好,并使语音识别产品更易被用户接受,对公司和用户更有价值。现在,这个数字有几个含义。如果你想要最好的性能水平,你的性能在这里,达到这个性能水平,那么你需要两件事:一个是,它确实有助于拥有大量的数据。这就是为什么有时你会听到大数据的原因。 拥有更多数据几乎总是有帮助。 第二件事是,你希望能够训练一个非常大的神经网络。 因此,包括摩尔定律在内的快速计算机的兴起,以及图形处理单元或GPU等专用处理器的兴起,在后来的视频中你会听到更多,这使得许多公司,而不仅仅是一家大型科技公司 但是,许多其他公司能够在足够大量的数据上训练大型神经网络,以获得非常好的性能并提高业务价值。 AI中最重要的想法是机器学习,基本上是监督学习,即A到B,或输入到输出映射。 使它能够很好地工作的是数据。 在下一个视频中,让我们看一下数据是什么以及您可能拥有哪些数据? 以及如何考虑将其投入AI系统。 让我们继续下一个视频。

这篇关于吴恩达教授《AI for everyone》课程第一周——机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093008

相关文章

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]