数据湖之Delta Lake

2024-08-21 10:52
文章标签 数据 lake delta 湖之

本文主要是介绍数据湖之Delta Lake,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Delta Lake:数据湖存储层概述

Delta Lake 是一种开源的存储层技术,构建在 Apache Spark 的基础之上,旨在解决传统数据湖的可靠性、性能和数据一致性问题。它通过引入 ACID 事务、数据版本控制、时间旅行和统一的批处理与流处理等特性,显著提升了数据湖的可用性和数据管理能力。Delta Lake 由 Databricks 推出,现已成为现代数据湖架构的核心组件。

1. 基本概念

  • 数据湖(Data Lake):数据湖是一种存储架构,用于存储大量的结构化、半结构化和非结构化数据。传统的数据湖虽然具备存储大规模数据的能力,但在数据一致性、数据质量和可靠性方面存在挑战。
  • ACID 事务:Delta Lake 支持 ACID(原子性、一致性、隔离性、持久性)事务,确保数据操作的原子性和一致性,避免部分写入导致的数据不一致问题。
  • 时间旅行:Delta Lake 允许用户访问历史数据版本,使得用户可以“回溯”到数据的任何一个时间点。这一特性在数据恢复、调试和审核中非常有用。

2. 核心特性

  • ACID 事务支持:Delta Lake 的核心优势在于支持 ACID 事务,这意味着无论是数据的插入、更新还是删除操作,都能够保证数据的一致性和隔离性,避免数据湖中常见的“脏数据”问题。
  • 可扩展的元数据处理:Delta Lake 通过扩展 Spark 的元数据处理能力,能够高效处理亿万级文件和元数据,适用于大规模数据集。
  • Schema Enforcement 和 Schema Evolution:Delta Lake 支持 Schema Enforcement(模式强制)和 Schema Evolution(模式演变),确保数据写入时的结构一致性,同时允许数据模式的动态变化,适应不断演变的业务需求。
  • 数据版本控制和时间旅行:每次对数据的操作都会生成一个新版本,用户可以通过数据版本控制机制,回溯或恢复到任意历史版本,保障数据的可追溯性和恢复能力。
  • 数据合并与清理(Data Compaction and Cleanup):Delta Lake 提供了数据合并(compaction)和清理功能,自动将小文件合并为大文件,提高查询性能并减少存储开销。
  • 流批一体化:Delta Lake 支持统一的批处理和流处理模型,允许用户在同一数据集上同时进行批处理分析和实时流数据处理,简化数据管道的构建。

3. 编程模型

  • 基于 Spark 的编程接口:Delta Lake 构建在 Apache Spark 之上,因此完全兼容 Spark 的 DataFrame 和 SQL API。用户可以使用熟悉的 Spark 编程模型进行数据操作,如读取、写入、更新和删除数据。
  • Merge 操作:Delta Lake 提供了强大的 Merge 操作(Merge Into),允许用户根据条件合并数据,常用于更新和删除操作。这一功能使得在数据湖中实现数据增量更新更加简单和高效。
  • 流批处理统一 API:通过统一的 API,用户可以轻松地在 Delta Lake 上实现流处理任务,将流数据写入 Delta 表,并进行实时分析。

4. 运行模式

  • 单节点模式:Delta Lake 可以在单节点 Spark 集群中运行,适合开发和小规模部署环境。
  • 分布式模式:在大规模生产环境中,Delta Lake 通常以分布式模式运行,依赖于分布式存储系统(如 HDFS、Amazon S3、Azure Blob Storage)来存储数据,利用 Spark 的分布式计算能力处理和分析数据。
  • 云原生支持:Delta Lake 支持在各种云环境中运行,如 AWS、Azure 和 Google Cloud,支持云存储和云原生的部署模式。

5. 状态管理和容错

  • 数据版本控制:Delta Lake 使用日志记录数据操作的方式实现数据版本控制,每次写入操作都会生成一个新的版本,用户可以根据版本号回滚或查询历史数据,确保数据的一致性和可追溯性。
  • 故障恢复:Delta Lake 的日志记录机制使得系统能够在发生故障时恢复到一致的状态。即使在数据写入过程中出现异常,也能通过日志重放恢复数据的完整性。
  • 快照隔离:Delta Lake 提供了快照隔离,确保并发事务不会相互干扰,从而避免读取到不完整或不一致的数据。

6. 生态系统和集成

  • 与 Apache Spark 集成:Delta Lake 原生集成 Apache Spark,用户可以使用 Spark 的 DataFrame API 和 SQL 查询接口进行数据操作。
  • 与云存储集成:Delta Lake 支持主流的云存储服务,如 AWS S3、Azure Data Lake Storage 和 Google Cloud Storage,允许用户在云环境中存储和管理数据。
  • 与 BI 工具集成:Delta Lake 可以与各种商业智能(BI)工具集成,如 Tableau、Power BI、Qlik 等,通过连接 Delta Lake 数据源进行数据分析和可视化。
  • 与数据治理工具集成:Delta Lake 支持与数据治理和管理工具集成,如 Apache Atlas 和 Apache Ranger,帮助用户管理数据的元数据、数据质量和访问控制。

7. 应用场景

  • 实时分析和报表:Delta Lake 支持流批一体化,适合处理实时数据分析场景,如监控系统、实时报表生成和实时数据驱动的应用程序。
  • 数据湖 ETL 管道:通过 Delta Lake 的 ACID 事务支持,用户可以构建可靠的 ETL(Extract, Transform, Load)数据管道,将数据从源系统提取、转换并加载到 Delta Lake 中,确保数据的高质量和一致性。
  • 机器学习:Delta Lake 支持大规模数据的存储和处理,适合用于机器学习模型的训练数据管理。用户可以在 Delta Lake 中存储和管理训练数据集,并利用 Spark MLlib 或其他机器学习框架进行模型训练。
  • 数据合规与审计:由于 Delta Lake 支持数据版本控制和时间旅行,企业可以轻松地管理和审计历史数据,满足数据合规要求。

8. 案例和用户

  • Databricks Lakehouse Platform:Delta Lake 是 Databricks 的核心组件,支持其 Lakehouse 体系结构,用于统一数据湖和数据仓库的功能,帮助用户构建高效的数据平台。
  • Shopify:电商平台 Shopify 使用 Delta Lake 管理和分析其大量的交易数据,确保数据的一致性和实时性,并在此基础上进行商业决策分析。
  • LendingClub:LendingClub 使用 Delta Lake 处理和管理其金融交易数据,支持实时分析和报表生成,提升其数据分析能力和业务洞察。
  • eBay:eBay 利用 Delta Lake 统一管理其数据湖中的结构化和非结构化数据,构建实时数据管道,提升数据处理的效率和准确性。

总结

Delta Lake 是现代数据湖架构的重要组成部分,通过引入 ACID 事务、时间旅行、数据版本控制和统一的流批处理能力,显著提升了数据湖的可靠性和数据管理能力。它不仅能够解决传统数据湖的许多问题,还为实时数据处理和大规模数据分析提供了强大的支持。Delta Lake 已经被广泛应用于各行各业,为企业的数据分析和管理提供了坚实的基础。

这篇关于数据湖之Delta Lake的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1092959

相关文章

如何使用C#串口通讯实现数据的发送和接收

《如何使用C#串口通讯实现数据的发送和接收》本文详细介绍了如何使用C#实现基于串口通讯的数据发送和接收,通过SerialPort类,我们可以轻松实现串口通讯,并结合事件机制实现数据的传递和处理,感兴趣... 目录1. 概述2. 关键技术点2.1 SerialPort类2.2 异步接收数据2.3 数据解析2.

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Jmeter如何向数据库批量插入数据

《Jmeter如何向数据库批量插入数据》:本文主要介绍Jmeter如何向数据库批量插入数据方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Jmeter向数据库批量插入数据Jmeter向mysql数据库中插入数据的入门操作接下来做一下各个元件的配置总结Jmete

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2