STM32 —— TIM(基本定时器)详解_stm32的tim

2024-08-21 07:12

本文主要是介绍STM32 —— TIM(基本定时器)详解_stm32的tim,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32 —— TIM(基本定时器)详解_stm32的tim

一、定时器简介

STM32F1 系列中,除了互联型的产品,共有 8 个定时器,分为基本定时器,通用定时器和高级定时器。基本定时器 TIM6 和 TIM7 是一个 16 位的只能向上计数的定时器,只能定时,没有外部 IO。通用定时器 TIM2/3/4/5 是一个 16 位的可以向上/下计数的定时器,可以定时,可以输出比较,可以输入捕捉,每个定时器有四个外部 IO。高级定时器 TIM1/8是一个 16 位的可以向上/下计数的定时器,可以定时,可以输出比较,可以输入捕捉,还可以有三相电机互补输出信号,每个定时器有 8 个外部 IO。

image

强调一下,并不是所有的型号都有基本定时器模块。

image

二、基本定时器框图

image

1. 时钟源(TIMxCLK)
定时器时钟 TIMxCLK,即内部时钟 CK_INT,经 APB1 预分频器后分频提供,如果APB1 预分频系数等于 1,则频率不变,否则频率乘以 2,库函数中 APB1 预分频的系数是 2,即 PCLK1=36M,所以定时器时钟 TIMxCLK=36*2=72M。
2. 计数器时钟(CK_CNT)
定时器时钟经过 PSC 预分频器之后,即 CK_CNT,用来驱动计数器计数。PSC 是一个16 位的预分频器,可以对定时器时钟 TIMxCLK 进行 1~65536 之间的任何一个数进行分频。具体计算方式为:CK_CNT=TIMxCLK/(PSC+1)。
3. 计数器(CNT)
计数器 CNT 是一个 16 位的计数器,只能往上计数,最大计数值为 65535。当计数达到自动重装载寄存器的时候产生更新事件,并清零从头开始计数。
4. 自动重装载寄存器(ARR)
自动重装载寄存器 ARR 是一个 16 位的寄存器,这里面装着计数器能计数的最大数值。当计数到这个值的时候,如果使能了中断的话,定时器就产生溢出中断。
5. 定时时间计算

image

三、定时器初始化结构体

typedef struct
{uint16_t TIM_Prescaler; 		 //预分频系数 PSCuint16_t TIM_CounterMode;		//计数模式,基本定时器只能向上递增计数uint16_t TIM_Period;			//定时器周期 ARRuint16_t TIM_ClockDivision; 	//外部输入时钟分频,基本定时器用不到uint8_t TIM_RepetitionCounter; //重复计数,也用不到
} TIM_TimeBaseInitTypeDef;  

/
(1) TIM_Prescaler:定时器预分频器设置,时钟源经该预分频器才是定时器时钟,它设定TIMx_PSC 寄存器的值。可设置范围为 0 至 65535,实现 1 至 65536 分频。
(2) TIM_CounterMode:定时器计数方式,可是在为向上计数、向下计数以及三种中心对齐模式。基本定时器只能是向上计数,即 TIMx_CNT 只能从 0 开始递增,并且无需初始化。
(3) TIM_Period:定时器周期,实际就是设定自动重载寄存器的值,在事件生成时更新到影子寄存器。可设置范围为 0 至 65535。
(4) TIM_ClockDivision:时钟分频,设置定时器时钟 CK_INT 频率与数字滤波器采样时钟频率分频比,基本定时器没有此功能,不用设置。
(5) TIM_RepetitionCounter:重复计数器,属于高级控制寄存器专用寄存器位,利用它可以非常容易控制输出 PWM 的个数。这里不用设置。

虽然定时器基本初始化结构体有 5 个成员,但对于基本定时器只需设置其中TIM_Prescaler、TIM_Period就可以。
/

四、实例

基本定时器,实现定时1s 实现LED翻转

void BASETimer_NVIC_Config(void)
{NVIC_InitTypeDef NVIC_InitStruct;NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);NVIC_InitStruct.NVIC_IRQChannel = TIM6_IRQn;NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1; //只有一个中断,随意配NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;NVIC_Init(&NVIC_InitStruct);
}
void BaseTimer_Config(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE );TIM_TimeBaseInitStruct.TIM_Period = (1000-1);TIM_TimeBaseInitStruct.TIM_Prescaler = (72-1);  //中断一次 1ms
//	不配置也可
//	TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;
//	TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;  //默认向上
//	TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0x01;TIM_TimeBaseInit(TIM6,&TIM_TimeBaseInitStruct);//配置中断TIM_ITConfig(TIM6,TIM_IT_Update,ENABLE);TIM_ClearFlag(TIM6,TIM_FLAG_Update);//使能计数TIM_Cmd(TIM6,ENABLE);
}
void BaseTimer_Init(void)
{BASETimer_NVIC_Config();BaseTimer_Config();
}

中断服务函数

uint16_t timer = 0;
void TIM6_IRQHandler(void)
{if(TIM_GetITStatus(DEBUG_TIMx,TIM_IT_Update)){timer++;}TIM_ClearITPendingBit(DEBUG_TIMx,TIM_IT_Update);
}

主函数

int main(void)
{LED_GPIO_Config();BaseTimer_Init();LED_G_Toggle;while(1){if(timer == 1000){LED_G_Toggle;timer = 0;}}
}

总结:

编程要点
(1) 开定时器时钟 TIMx_CLK, x[6,7];
(2) 初始化时基初始化结构体;(只配置TIM_Prescaler、TIM_Period其他随便填)
(3) 使能 TIMx, x[6,7] update 中断;
(4) 打开定时器;
(5) 编写中断服务程序

参考:《【野火®】零死角玩转STM32—F103霸道_V2》、《STM32F10x-中文参考手册》

这篇关于STM32 —— TIM(基本定时器)详解_stm32的tim的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1092480

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1