ID3算法详解:构建决策树的利器

2024-08-21 02:12

本文主要是介绍ID3算法详解:构建决策树的利器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

引言

ID3算法概述

算法基础

信息熵

​编辑

信息增益

ID3算法步骤

决策树

概念:

核心:

节点

1. 根节点

2. 非叶子节点

3. 叶子节点


引言

在机器学习领域,决策树是一种非常流行的分类和回归方法。其中,ID3算法作为决策树算法中的经典之作,自其提出以来就备受关注。本文将详细介绍ID3算法的原理、步骤、应用以及优缺点,帮助读者深入理解这一强大的分类工具。

ID3算法概述

ID3算法(Iterative Dichotomiser 3)是由澳大利亚计算机科学家Ross Quinlan在1986年提出的一种决策树学习算法。它基于信息论中的熵和信息增益的概念,通过递归地选择最佳属性来划分数据集,从而构建决策树。ID3算法的核心思想是通过选择最能降低数据不确定性的属性来进行划分,直到所有数据都属于同一类别。

算法基础

信息熵

信息熵是度量数据集中不确定性的一个指标,其值越大,表示数据集的不确定性越高,数据集的混乱程度越高。对于具有n个类别的数据集U,其信息熵H(U)可以定义为:

其中,pi​是U中第i个类别出现的概率。

例:

信息增益

信息增益是衡量某个属性对数据集分类能力的一个指标。对于数据集D和属性A,A的信息增益Gain(U,A)可以定义为:

Gain(U,A)=H(U)−∑v∈V​∣U∣∣Uv​∣​H(Uv​)

其中,V是属性A的所有可能值,Uv​是D中在属性A上取值为v的子集。

ID3算法步骤

  1. 计算信息熵:首先计算整个数据集D的信息熵H(D)。
  2. 计算信息增益:对于每个属性A,计算其信息增益Gain(D,A)。
  3. 选择最佳属性:选择信息增益最大的属性作为当前节点的分裂属性。
  4. 划分数据集:根据选定的属性A的不同取值,将数据集D划分为若干个子集。
  5. 递归构建决策树:对每个子集递归地执行步骤1-4,直到满足停止条件(如所有实例属于同一类别或没有更多属性可供划分)。

决策树

概念:


决策树通过对训练样本的学习,并建立分类规则,然后依据分类规则,对新样本数据进行分类预测,属于有监督学习。

核心:


所有数据从根节点一步一步落到叶子节点。

节点

1. 根节点
  • 定义:决策树的根节点是整棵树的起点,也是第一个进行特征判断的节点。它代表了决策过程的开始,是后续所有分支和节点的基础。
  • 作用:根节点根据训练数据集中最具分类能力的特征进行划分,从而引导数据流向不同的子节点。
2. 非叶子节点
  • 定义:非叶子节点是决策树中除了根节点和叶子节点以外的所有节点。它们位于根节点和叶子节点之间,每个非叶子节点都代表了一个特征判断或决策规则。
  • 特点
    • 入边与出边:非叶子节点通常有一条入边(来自其父节点)和两条或多条出边(指向其子节点)。这些边代表了特征的不同取值或决策结果的不同方向。
    • 决策规则:每个非叶子节点都包含对某个特征的测试条件,用于将数据集分割成更小的子集。这些决策规则是由已知数据集计算而得的,旨在减少数据集的不确定性。
  • 作用:非叶子节点通过不断的特征判断和决策规则应用,逐步将数据集细化,为最终的分类或回归结果奠定基础。
3. 叶子节点
  • 定义:叶子节点是决策树中的末端节点,表示分类或回归的最终结果。在分类问题中,每个叶子节点都对应一个类别标签;在回归问题中,每个叶子节点则对应一个具体的数值预测。
  • 特点
    • 无出边:叶子节点只有一条入边(来自其父节点),没有出边。这意味着叶子节点是决策过程的终点,不再进行进一步的特征判断或决策规则应用。
    • 分类或回归结果:每个叶子节点都包含了一个明确的分类或回归结果,这是决策树对输入数据的最终预测。
  • 生成条件:叶子节点的生成通常基于两个条件:一是无法进一步分割数据集(即所有样本都属于同一类别或具有相同的特征值);二是达到了预设的停止条件(如节点中的样本数小于某个阈值、树的深度达到了预设的最大值等)。

综上所述,决策树的根节点、非叶子节点和叶子节点共同构成了决策树的结构,通过不断的特征判断和决策规则应用,实现了对输入数据的分类或回归预测。

import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot_tree
import matplotlib.pyplot as plt# 假设的数据集(从图片中猜测的)
data = {'Outlook': ['sunny', 'sunny', 'overcast', 'rainy', 'rainy', 'rainy', 'overcast', 'sunny', 'sunny', 'rainy', 'sunny','overcast', 'overcast', 'rainy'],'Temperature': ['hot', 'hot', 'hot', 'mild', 'cool', 'cool', 'cool', 'mild', 'cool', 'mild', 'mild', 'mild', 'hot','mild'],'Humidity': ['high', 'high', 'high', 'high', 'normal', 'normal', 'normal', 'high', 'normal', 'normal', 'normal','high', 'normal', 'high'],'Wind': ['weak', 'strong', 'weak', 'weak', 'weak', 'strong', 'strong', 'weak', 'weak', 'weak', 'strong', 'strong','weak', 'strong'],'PlayTennis': ['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no']
}# 将数据转换为DataFrame
df = pd.DataFrame(data)# 将类别数据转换为数值型数据(scikit-learn要求)
df = pd.get_dummies(df, drop_first=True)  # 使用one-hot编码# 分离特征和标签
X = df.drop('PlayTennis_yes', axis=1)
y = df['PlayTennis_yes']# 创建决策树模型
clf = DecisionTreeClassifier(criterion='entropy')  # 使用熵作为分裂标准,类似于ID3的信息增益
clf.fit(X, y)# 绘制决策树
plt.figure(figsize=(20, 10))
plot_tree(clf, filled=True, feature_names=X.columns, class_names=['no', 'yes'])
plt.show()

运行结果:

这篇关于ID3算法详解:构建决策树的利器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091830

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML