ID3算法详解:构建决策树的利器

2024-08-21 02:12

本文主要是介绍ID3算法详解:构建决策树的利器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

引言

ID3算法概述

算法基础

信息熵

​编辑

信息增益

ID3算法步骤

决策树

概念:

核心:

节点

1. 根节点

2. 非叶子节点

3. 叶子节点


引言

在机器学习领域,决策树是一种非常流行的分类和回归方法。其中,ID3算法作为决策树算法中的经典之作,自其提出以来就备受关注。本文将详细介绍ID3算法的原理、步骤、应用以及优缺点,帮助读者深入理解这一强大的分类工具。

ID3算法概述

ID3算法(Iterative Dichotomiser 3)是由澳大利亚计算机科学家Ross Quinlan在1986年提出的一种决策树学习算法。它基于信息论中的熵和信息增益的概念,通过递归地选择最佳属性来划分数据集,从而构建决策树。ID3算法的核心思想是通过选择最能降低数据不确定性的属性来进行划分,直到所有数据都属于同一类别。

算法基础

信息熵

信息熵是度量数据集中不确定性的一个指标,其值越大,表示数据集的不确定性越高,数据集的混乱程度越高。对于具有n个类别的数据集U,其信息熵H(U)可以定义为:

其中,pi​是U中第i个类别出现的概率。

例:

信息增益

信息增益是衡量某个属性对数据集分类能力的一个指标。对于数据集D和属性A,A的信息增益Gain(U,A)可以定义为:

Gain(U,A)=H(U)−∑v∈V​∣U∣∣Uv​∣​H(Uv​)

其中,V是属性A的所有可能值,Uv​是D中在属性A上取值为v的子集。

ID3算法步骤

  1. 计算信息熵:首先计算整个数据集D的信息熵H(D)。
  2. 计算信息增益:对于每个属性A,计算其信息增益Gain(D,A)。
  3. 选择最佳属性:选择信息增益最大的属性作为当前节点的分裂属性。
  4. 划分数据集:根据选定的属性A的不同取值,将数据集D划分为若干个子集。
  5. 递归构建决策树:对每个子集递归地执行步骤1-4,直到满足停止条件(如所有实例属于同一类别或没有更多属性可供划分)。

决策树

概念:


决策树通过对训练样本的学习,并建立分类规则,然后依据分类规则,对新样本数据进行分类预测,属于有监督学习。

核心:


所有数据从根节点一步一步落到叶子节点。

节点

1. 根节点
  • 定义:决策树的根节点是整棵树的起点,也是第一个进行特征判断的节点。它代表了决策过程的开始,是后续所有分支和节点的基础。
  • 作用:根节点根据训练数据集中最具分类能力的特征进行划分,从而引导数据流向不同的子节点。
2. 非叶子节点
  • 定义:非叶子节点是决策树中除了根节点和叶子节点以外的所有节点。它们位于根节点和叶子节点之间,每个非叶子节点都代表了一个特征判断或决策规则。
  • 特点
    • 入边与出边:非叶子节点通常有一条入边(来自其父节点)和两条或多条出边(指向其子节点)。这些边代表了特征的不同取值或决策结果的不同方向。
    • 决策规则:每个非叶子节点都包含对某个特征的测试条件,用于将数据集分割成更小的子集。这些决策规则是由已知数据集计算而得的,旨在减少数据集的不确定性。
  • 作用:非叶子节点通过不断的特征判断和决策规则应用,逐步将数据集细化,为最终的分类或回归结果奠定基础。
3. 叶子节点
  • 定义:叶子节点是决策树中的末端节点,表示分类或回归的最终结果。在分类问题中,每个叶子节点都对应一个类别标签;在回归问题中,每个叶子节点则对应一个具体的数值预测。
  • 特点
    • 无出边:叶子节点只有一条入边(来自其父节点),没有出边。这意味着叶子节点是决策过程的终点,不再进行进一步的特征判断或决策规则应用。
    • 分类或回归结果:每个叶子节点都包含了一个明确的分类或回归结果,这是决策树对输入数据的最终预测。
  • 生成条件:叶子节点的生成通常基于两个条件:一是无法进一步分割数据集(即所有样本都属于同一类别或具有相同的特征值);二是达到了预设的停止条件(如节点中的样本数小于某个阈值、树的深度达到了预设的最大值等)。

综上所述,决策树的根节点、非叶子节点和叶子节点共同构成了决策树的结构,通过不断的特征判断和决策规则应用,实现了对输入数据的分类或回归预测。

import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot_tree
import matplotlib.pyplot as plt# 假设的数据集(从图片中猜测的)
data = {'Outlook': ['sunny', 'sunny', 'overcast', 'rainy', 'rainy', 'rainy', 'overcast', 'sunny', 'sunny', 'rainy', 'sunny','overcast', 'overcast', 'rainy'],'Temperature': ['hot', 'hot', 'hot', 'mild', 'cool', 'cool', 'cool', 'mild', 'cool', 'mild', 'mild', 'mild', 'hot','mild'],'Humidity': ['high', 'high', 'high', 'high', 'normal', 'normal', 'normal', 'high', 'normal', 'normal', 'normal','high', 'normal', 'high'],'Wind': ['weak', 'strong', 'weak', 'weak', 'weak', 'strong', 'strong', 'weak', 'weak', 'weak', 'strong', 'strong','weak', 'strong'],'PlayTennis': ['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no']
}# 将数据转换为DataFrame
df = pd.DataFrame(data)# 将类别数据转换为数值型数据(scikit-learn要求)
df = pd.get_dummies(df, drop_first=True)  # 使用one-hot编码# 分离特征和标签
X = df.drop('PlayTennis_yes', axis=1)
y = df['PlayTennis_yes']# 创建决策树模型
clf = DecisionTreeClassifier(criterion='entropy')  # 使用熵作为分裂标准,类似于ID3的信息增益
clf.fit(X, y)# 绘制决策树
plt.figure(figsize=(20, 10))
plot_tree(clf, filled=True, feature_names=X.columns, class_names=['no', 'yes'])
plt.show()

运行结果:

这篇关于ID3算法详解:构建决策树的利器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091830

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO