算法解决收益最大化的问题,比如一个楼房有三种建筑方案

2024-08-20 22:44

本文主要是介绍算法解决收益最大化的问题,比如一个楼房有三种建筑方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。
市场调研后发现有市场接受度会分高低
1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万
2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万
3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万
概率p为50%,收益和风险各50%

选择哪个方案,才是利益最大化并且风险最小化?

要解决这个收益最大化问题,同时最小化风险,可以使用期望值方差相结合的方法进行决策分析。这种方法既考虑了潜在收益,也考虑了风险,即收益的不确定性。

具体来说,可以通过计算每种方案的期望收益和收益方差来决定应该选择哪个方案:

  1. 期望收益:用来衡量平均情况下每个方案的收益情况。期望值越高,表示该方案平均收益越高。
  2. 收益方差:用来衡量收益的波动性。方差越大,表示该方案的风险越高。

下面是具体步骤:

1. 计算每种方案的期望收益

期望收益 = 市场接受度高的收益 * 市场接受度高的概率 + 市场接受度低的收益 * 市场接受度低的概率。

设市场接受度高的概率为 ( p ),市场接受度低的概率为 ( 1-p )。

  • 大型方案:

    • 期望收益 ( E_1 = 2000p - 900(1-p) = 2900p - 900 )
  • 中型方案:

    • 期望收益 ( E_2 = 1400p + 500(1-p) = 900p + 500 )
  • 小型方案:

    • 期望收益 ( E_3 = 800p + 700(1-p) = 100p + 700 )

2. 计算每种方案的收益方差

方差可以衡量收益的波动性,公式如下:
[ \text{方差} = p \times (\text{市场接受度高的收益} - \text{期望收益})^2 + (1-p) \times (\text{市场接受度低的收益} - \text{期望收益})^2 ]

3. 根据期望收益和方差做出决策

  • 如果你更关注平均收益,选择期望收益最高的方案。
  • 如果你更关注风险,则可以选择期望收益较高且方差较小的方案,或者根据一定的风险偏好选择方案。

根据提供的信息,市场接受度高和低的概率 ( p ) 均为 50%。你希望在收益和风险之间做出均衡的选择,这意味着你需要考虑每个方案的期望收益和方差,然后做出一个基于这两者的综合决策。

1. 计算每种方案的期望收益

使用公式:
[ E = \text{高市场接受度收益} \times p + \text{低市场接受度收益} \times (1-p) ]

对每种方案计算期望收益:

  • 大型方案
    [
    E_1 = 2000 \times 0.5 + (-900) \times 0.5 = 1000 - 450 = 550 \ \text{万元}
    ]

  • 中型方案
    [
    E_2 = 1400 \times 0.5 + 500 \times 0.5 = 700 + 250 = 950 \ \text{万元}
    ]

  • 小型方案
    [
    E_3 = 800 \times 0.5 + 700 \times 0.5 = 400 + 350 = 750 \ \text{万元}
    ]

2. 计算每种方案的收益方差

方差计算公式为:
[ \text{方差} = p \times (\text{高市场接受度收益} - \text{期望收益})^2 + (1-p) \times (\text{低市场接受度收益} - \text{期望收益})^2 ]

对每种方案计算方差:

  • 大型方案
    [
    \text{方差}_1 = 0.5 \times (2000 - 550)^2 + 0.5 \times (-900 - 550)^2
    ]
    [
    \text{方差}_1 = 0.5 \times 2102500 + 0.5 \times 2102500 = 2102500 \ \text{万元}^2
    ]

  • 中型方案
    [
    \text{方差}_2 = 0.5 \times (1400 - 950)^2 + 0.5 \times (500 - 950)^2
    ]
    [
    \text{方差}_2 = 0.5 \times 202500 + 0.5 \times 202500 = 202500 \ \text{万元}^2
    ]

  • 小型方案
    [
    \text{方差}_3 = 0.5 \times (800 - 750)^2 + 0.5 \times (700 - 750)^2
    ]
    [
    \text{方差}_3 = 0.5 \times 2500 + 0.5 \times 2500 = 2500 \ \text{万元}^2
    ]

3. 综合收益和风险选择方案

为了综合收益和风险,可以使用一个加权函数来计算总得分,比如:
[ \text{得分} = \text{期望收益} - k \times \text{方差} ]
这里 ( k ) 是一个权重因子,代表你对风险的容忍度。在此我们将收益和方差各权重50%(即 ( k = 1 )),计算得分:

  • 大型方案
    [
    \text{得分}_1 = 550 - 1 \times 2102500 = -2101950
    ]

  • 中型方案
    [
    \text{得分}_2 = 950 - 1 \times 202500 = -201550
    ]

  • 小型方案
    [
    \text{得分}_3 = 750 - 1 \times 2500 = -1750
    ]

结论:

在考虑了收益和风险后的综合得分中,小型方案(6层30个单元)的得分最高(得分为 -1750),表明它是收益较高且风险最低的方案。因此,小型方案是最优选择。

这篇关于算法解决收益最大化的问题,比如一个楼房有三种建筑方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091381

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

解决idea启动项目报错java: OutOfMemoryError: insufficient memory

《解决idea启动项目报错java:OutOfMemoryError:insufficientmemory》:本文主要介绍解决idea启动项目报错java:OutOfMemoryError... 目录原因:解决:总结 原因:在Java中遇到OutOfMemoryError: insufficient me

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

Python实现繁体转简体功能的三种方案

《Python实现繁体转简体功能的三种方案》在中文信息处理中,繁体字与简体字的转换是一个常见需求,无论是处理港澳台地区的文本数据,还是开发面向不同中文用户群体的应用,繁简转换都是不可或缺的功能,本文将... 目录前言为什么需要繁简转换?python实现方案方案一:使用opencc库方案二:使用zhconv库