算法解决收益最大化的问题,比如一个楼房有三种建筑方案

2024-08-20 22:44

本文主要是介绍算法解决收益最大化的问题,比如一个楼房有三种建筑方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。
市场调研后发现有市场接受度会分高低
1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万
2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万
3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万
概率p为50%,收益和风险各50%

选择哪个方案,才是利益最大化并且风险最小化?

要解决这个收益最大化问题,同时最小化风险,可以使用期望值方差相结合的方法进行决策分析。这种方法既考虑了潜在收益,也考虑了风险,即收益的不确定性。

具体来说,可以通过计算每种方案的期望收益和收益方差来决定应该选择哪个方案:

  1. 期望收益:用来衡量平均情况下每个方案的收益情况。期望值越高,表示该方案平均收益越高。
  2. 收益方差:用来衡量收益的波动性。方差越大,表示该方案的风险越高。

下面是具体步骤:

1. 计算每种方案的期望收益

期望收益 = 市场接受度高的收益 * 市场接受度高的概率 + 市场接受度低的收益 * 市场接受度低的概率。

设市场接受度高的概率为 ( p ),市场接受度低的概率为 ( 1-p )。

  • 大型方案:

    • 期望收益 ( E_1 = 2000p - 900(1-p) = 2900p - 900 )
  • 中型方案:

    • 期望收益 ( E_2 = 1400p + 500(1-p) = 900p + 500 )
  • 小型方案:

    • 期望收益 ( E_3 = 800p + 700(1-p) = 100p + 700 )

2. 计算每种方案的收益方差

方差可以衡量收益的波动性,公式如下:
[ \text{方差} = p \times (\text{市场接受度高的收益} - \text{期望收益})^2 + (1-p) \times (\text{市场接受度低的收益} - \text{期望收益})^2 ]

3. 根据期望收益和方差做出决策

  • 如果你更关注平均收益,选择期望收益最高的方案。
  • 如果你更关注风险,则可以选择期望收益较高且方差较小的方案,或者根据一定的风险偏好选择方案。

根据提供的信息,市场接受度高和低的概率 ( p ) 均为 50%。你希望在收益和风险之间做出均衡的选择,这意味着你需要考虑每个方案的期望收益和方差,然后做出一个基于这两者的综合决策。

1. 计算每种方案的期望收益

使用公式:
[ E = \text{高市场接受度收益} \times p + \text{低市场接受度收益} \times (1-p) ]

对每种方案计算期望收益:

  • 大型方案
    [
    E_1 = 2000 \times 0.5 + (-900) \times 0.5 = 1000 - 450 = 550 \ \text{万元}
    ]

  • 中型方案
    [
    E_2 = 1400 \times 0.5 + 500 \times 0.5 = 700 + 250 = 950 \ \text{万元}
    ]

  • 小型方案
    [
    E_3 = 800 \times 0.5 + 700 \times 0.5 = 400 + 350 = 750 \ \text{万元}
    ]

2. 计算每种方案的收益方差

方差计算公式为:
[ \text{方差} = p \times (\text{高市场接受度收益} - \text{期望收益})^2 + (1-p) \times (\text{低市场接受度收益} - \text{期望收益})^2 ]

对每种方案计算方差:

  • 大型方案
    [
    \text{方差}_1 = 0.5 \times (2000 - 550)^2 + 0.5 \times (-900 - 550)^2
    ]
    [
    \text{方差}_1 = 0.5 \times 2102500 + 0.5 \times 2102500 = 2102500 \ \text{万元}^2
    ]

  • 中型方案
    [
    \text{方差}_2 = 0.5 \times (1400 - 950)^2 + 0.5 \times (500 - 950)^2
    ]
    [
    \text{方差}_2 = 0.5 \times 202500 + 0.5 \times 202500 = 202500 \ \text{万元}^2
    ]

  • 小型方案
    [
    \text{方差}_3 = 0.5 \times (800 - 750)^2 + 0.5 \times (700 - 750)^2
    ]
    [
    \text{方差}_3 = 0.5 \times 2500 + 0.5 \times 2500 = 2500 \ \text{万元}^2
    ]

3. 综合收益和风险选择方案

为了综合收益和风险,可以使用一个加权函数来计算总得分,比如:
[ \text{得分} = \text{期望收益} - k \times \text{方差} ]
这里 ( k ) 是一个权重因子,代表你对风险的容忍度。在此我们将收益和方差各权重50%(即 ( k = 1 )),计算得分:

  • 大型方案
    [
    \text{得分}_1 = 550 - 1 \times 2102500 = -2101950
    ]

  • 中型方案
    [
    \text{得分}_2 = 950 - 1 \times 202500 = -201550
    ]

  • 小型方案
    [
    \text{得分}_3 = 750 - 1 \times 2500 = -1750
    ]

结论:

在考虑了收益和风险后的综合得分中,小型方案(6层30个单元)的得分最高(得分为 -1750),表明它是收益较高且风险最低的方案。因此,小型方案是最优选择。

这篇关于算法解决收益最大化的问题,比如一个楼房有三种建筑方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091381

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

springboot报错Invalid bound statement (not found)的解决

《springboot报错Invalidboundstatement(notfound)的解决》本文主要介绍了springboot报错Invalidboundstatement(not... 目录一. 问题描述二.解决问题三. 添加配置项 四.其他的解决方案4.1 Mapper 接口与 XML 文件不匹配

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python中ModuleNotFoundError: No module named ‘timm’的错误解决

《Python中ModuleNotFoundError:Nomodulenamed‘timm’的错误解决》本文主要介绍了Python中ModuleNotFoundError:Nomodulen... 目录一、引言二、错误原因分析三、解决办法1.安装timm模块2. 检查python环境3. 解决安装路径问题