【python】逐步回归(多元线性回归模型中的应用)

2024-08-20 22:12

本文主要是介绍【python】逐步回归(多元线性回归模型中的应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、逐步回归
    • 1. 前进法(Forward Selection)
    • 2. 后退法(Backward Elimination)
    • 3. 逐步回归法(Stepwise Regression)
  • 二、示例
  • 三、代码实现----python


前言

  • Matlab中逐步回归的实现可以使用 Matlab 的 stepwise 函数,本文主要讨论逐步回归如何在 python 中使用。
  • 思路参考视频:
    https://www.bilibili.com/video/BV1kU4y1R7o2/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=67471d3a1b4f517b7a7964093e62f7e6

一、逐步回归

  • 逐步回归(Stepwise Regression)是一种选择统计模型的技术,用于找到最优模型,即通过添加或移除变量来选择合适的特征。
  • 逐步回归主要有三种方法:前进法(Forward Selection)、后退法(Backward Elimination)和逐步回归法(Stepwise Regression)。下面是对这三种方法的简单介绍:

1. 前进法(Forward Selection)

概念

  • 前进法从一个空模型开始,即最初没有任何预测变量。
  • 然后逐步添加预测变量,每次添加一个变量,使得新模型的评价指标(如AIC、BIC、R^2等)最优。
  • 继续这个过程,直到添加任何更多的变量都不能显著提高模型的性能。

步骤

  1. 从空模型开始,不包含任何预测变量。
  2. 评估每个未加入模型的变量,将使模型性能最优的变量加入模型。
  3. 重复步骤2,直到添加任何变量都不能显著改善模型。

2. 后退法(Backward Elimination)

概念

  • 后退法从包含所有预测变量的模型开始。
  • 然后逐步移除预测变量,每次移除一个变量,使得新模型的评价指标最优。
  • 继续这个过程,直到移除任何更多的变量都不能显著提高模型的性能。

步骤

  1. 从包含所有可能的预测变量的全模型开始。
  2. 评估每个变量的显著性,移除最不显著的变量(即对模型贡献最小的变量)。
  3. 重复步骤2,直到移除任何变量都不能显著改善模型。

3. 逐步回归法(Stepwise Regression)

概念

  • 逐步回归法结合了前进法和后退法,既可以添加变量也可以移除变量。
  • 每次步骤既可以是添加一个新变量,也可以是移除一个现有变量,以达到模型性能的最优。

步骤

  1. 从空模型开始或包含所有预测变量的模型开始(具体取决于实现方式)。
  2. 在每一步中,评估所有可能的添加或移除变量的操作。
  3. 选择对模型性能最优的操作(添加或移除一个变量)。
  4. 重复步骤2和步骤3,直到添加或移除任何变量都不能显著改善模型。

二、示例

  • 水泥凝固时放出的热量 y y y 与水泥中 4 种化学成分 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4 有关,今测得一组数据如下,试用逐步回归确定一个线性模型,并找出影响水泥凝固时放出热量的必要因素
    在这里插入图片描述
    根据此示例,本文选用后退法选择出影响水泥凝固时放出热量的必要因素。

三、代码实现----python

1. 输入数据

import pandas as pd
import numpy as np
# 数据
x1 = np.array([7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10])
x2 = np.array([26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68])
x3 = np.array([6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8])
x4 = np.array([60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12])
y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4])# 自变量矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})

2. 初始化

本文选用的后退法,所以被选择的因素初始化为包含所有因素,被排出的元素列表为空。

# 初始化未被选中的因素
excluded = list(initial_list)
# 初始化被选中的因素
included = list(set(X.columns) - set(excluded))

3. 评估每个变量的显著性

本文中使用 P P P 值的大小评估每个变量的显著性。

步骤:

  1. 拟合回归模型
  2. 获取所有特征的P值
  3. 找到最大的P值及其对应的特征。
# 拟合选中的因素
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的
p_values = model.pvalues# 排除常数项(截距项)的P值
p_values = p_values.drop('const')# 找到最大的P值及其对应的特征
max_p_value = p_values.max()
print("最大的P值为:",max_p_value)

4. 判断函数退出的标志

直到被选中的因素拟合后得到的最大 P P P 值小于 α ( 0.05 ) \alpha(0.05) α(0.05),意味着移除任何变量都不能显著改善模型,函数退出。

def stepwise_selection(X, y, initial_list = [], threshold = 0.05,mark = True):# 初始化未被选中的因素excluded = list(initial_list)# 初始化被选中的因素included = list(set(X.columns) - set(excluded))while mark:# 拟合选中的因素model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的p_values = model.pvalues# 排除常数项(截距项)的P值p_values = p_values.drop('const')# 找到最大的P值及其对应的特征max_p_value = p_values.max()print("最大的P值为:",max_p_value)if max_p_value < threshold:mark = Falseprint("最终模型:")print(model.summary())# 获取回归系数b = model.paramselse:max_p_feature = p_values.idxmax()print("最大的P值对应的特征为:",max_p_feature)# 从被选中的因素中去除included.remove(max_p_feature)print("更新后的因素为:",included)return included, b

5. 逐步回归的完整代码

import pandas as pd
import numpy as np
import statsmodels.api as sm# 数据
x1 = np.array([7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10])
x2 = np.array([26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68])
x3 = np.array([6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8])
x4 = np.array([60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12])
y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4])# 自变量矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})def stepwise_selection(X, y, initial_list=[], threshold=0.05,mark = True):# 初始化未被选中的因素excluded = list(initial_list)# 初始化被选中的因素included = list(set(X.columns) - set(excluded))while mark:# 拟合选中的因素model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的p_values = model.pvalues# 排除常数项(截距项)的P值p_values = p_values.drop('const')# 找到最大的P值及其对应的特征max_p_value = p_values.max()print("最大的P值为:",max_p_value)if max_p_value < threshold:mark = Falseprint("最终模型:")print(model.summary())# 获取回归系数b = model.paramselse:max_p_feature = p_values.idxmax()print("最大的P值对应的特征为:",max_p_feature)# 从被选中的因素中去除included.remove(max_p_feature)print("更新后的因素为:",included)return included, bresult, b = stepwise_selection(X, y)print(result)
print(b)

运行结果:

评估变量显著性的过程:
在这里插入图片描述

最终的模型:
在这里插入图片描述

回归系数:
在这里插入图片描述

6. 生成三维图的代码

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np# 计算Z的值
Z = b['const'] + b['x1'] * x1 + b['x2'] * x2# 创建一个新的3D绘图对象
fig = plt.figure()
'''
111 的具体含义是:
第一位 1:整个图形只有 1 行。
第二位 1:整个图形只有 1 列。
第三位 1:子图在这个 1x1 网格中的第 1 个位置。
'''
ax = fig.add_subplot(111, projection='3d')# 绘制散点图
ax.scatter(x1, x2, Z, c='r', marker='o', label='Data Points')# 创建网格以绘制曲面
x1_range = np.linspace(min(x1), max(x1), 100)
x2_range = np.linspace(min(x2), max(x2), 100)
x1_grid, x2_grid = np.meshgrid(x1_range, x2_range)# 计算曲面上的Z值
Z_surface = b['const'] + b['x1'] * x1_grid + b['x2'] * x2_grid# 绘制曲面图
'''
alpha意义:alpha 参数用于设置曲面的透明度。
取值范围:alpha 的取值范围是 0 到 1 之间。
0 表示完全透明,即不可见。
1 表示完全不透明。
作用:通过调整 alpha 参数,你可以在同一视图中更好地叠加多个图形,使得它们不会完全遮挡对方。cmap意义:cmap 参数用于设置曲面的颜色映射(colormap)。
常见的颜色映射:viridis, plasma, inferno, magma, cividis, jet, rainbow, coolwarm, hot 等。
作用:颜色映射用于根据 Z 值来着色曲面,帮助更清晰地展示高度或强度的变化。
'''
ax.plot_surface(x1_grid, x2_grid, Z_surface, alpha=0.5, cmap='viridis')# 设置标签
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Z')# 添加图例
ax.legend()# 显示图形
plt.show()

运行结果:

在这里插入图片描述

这篇关于【python】逐步回归(多元线性回归模型中的应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091317

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调