【python】逐步回归(多元线性回归模型中的应用)

2024-08-20 22:12

本文主要是介绍【python】逐步回归(多元线性回归模型中的应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、逐步回归
    • 1. 前进法(Forward Selection)
    • 2. 后退法(Backward Elimination)
    • 3. 逐步回归法(Stepwise Regression)
  • 二、示例
  • 三、代码实现----python


前言

  • Matlab中逐步回归的实现可以使用 Matlab 的 stepwise 函数,本文主要讨论逐步回归如何在 python 中使用。
  • 思路参考视频:
    https://www.bilibili.com/video/BV1kU4y1R7o2/?spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=67471d3a1b4f517b7a7964093e62f7e6

一、逐步回归

  • 逐步回归(Stepwise Regression)是一种选择统计模型的技术,用于找到最优模型,即通过添加或移除变量来选择合适的特征。
  • 逐步回归主要有三种方法:前进法(Forward Selection)、后退法(Backward Elimination)和逐步回归法(Stepwise Regression)。下面是对这三种方法的简单介绍:

1. 前进法(Forward Selection)

概念

  • 前进法从一个空模型开始,即最初没有任何预测变量。
  • 然后逐步添加预测变量,每次添加一个变量,使得新模型的评价指标(如AIC、BIC、R^2等)最优。
  • 继续这个过程,直到添加任何更多的变量都不能显著提高模型的性能。

步骤

  1. 从空模型开始,不包含任何预测变量。
  2. 评估每个未加入模型的变量,将使模型性能最优的变量加入模型。
  3. 重复步骤2,直到添加任何变量都不能显著改善模型。

2. 后退法(Backward Elimination)

概念

  • 后退法从包含所有预测变量的模型开始。
  • 然后逐步移除预测变量,每次移除一个变量,使得新模型的评价指标最优。
  • 继续这个过程,直到移除任何更多的变量都不能显著提高模型的性能。

步骤

  1. 从包含所有可能的预测变量的全模型开始。
  2. 评估每个变量的显著性,移除最不显著的变量(即对模型贡献最小的变量)。
  3. 重复步骤2,直到移除任何变量都不能显著改善模型。

3. 逐步回归法(Stepwise Regression)

概念

  • 逐步回归法结合了前进法和后退法,既可以添加变量也可以移除变量。
  • 每次步骤既可以是添加一个新变量,也可以是移除一个现有变量,以达到模型性能的最优。

步骤

  1. 从空模型开始或包含所有预测变量的模型开始(具体取决于实现方式)。
  2. 在每一步中,评估所有可能的添加或移除变量的操作。
  3. 选择对模型性能最优的操作(添加或移除一个变量)。
  4. 重复步骤2和步骤3,直到添加或移除任何变量都不能显著改善模型。

二、示例

  • 水泥凝固时放出的热量 y y y 与水泥中 4 种化学成分 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1,x2,x3,x4 有关,今测得一组数据如下,试用逐步回归确定一个线性模型,并找出影响水泥凝固时放出热量的必要因素
    在这里插入图片描述
    根据此示例,本文选用后退法选择出影响水泥凝固时放出热量的必要因素。

三、代码实现----python

1. 输入数据

import pandas as pd
import numpy as np
# 数据
x1 = np.array([7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10])
x2 = np.array([26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68])
x3 = np.array([6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8])
x4 = np.array([60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12])
y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4])# 自变量矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})

2. 初始化

本文选用的后退法,所以被选择的因素初始化为包含所有因素,被排出的元素列表为空。

# 初始化未被选中的因素
excluded = list(initial_list)
# 初始化被选中的因素
included = list(set(X.columns) - set(excluded))

3. 评估每个变量的显著性

本文中使用 P P P 值的大小评估每个变量的显著性。

步骤:

  1. 拟合回归模型
  2. 获取所有特征的P值
  3. 找到最大的P值及其对应的特征。
# 拟合选中的因素
model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的
p_values = model.pvalues# 排除常数项(截距项)的P值
p_values = p_values.drop('const')# 找到最大的P值及其对应的特征
max_p_value = p_values.max()
print("最大的P值为:",max_p_value)

4. 判断函数退出的标志

直到被选中的因素拟合后得到的最大 P P P 值小于 α ( 0.05 ) \alpha(0.05) α(0.05),意味着移除任何变量都不能显著改善模型,函数退出。

def stepwise_selection(X, y, initial_list = [], threshold = 0.05,mark = True):# 初始化未被选中的因素excluded = list(initial_list)# 初始化被选中的因素included = list(set(X.columns) - set(excluded))while mark:# 拟合选中的因素model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的p_values = model.pvalues# 排除常数项(截距项)的P值p_values = p_values.drop('const')# 找到最大的P值及其对应的特征max_p_value = p_values.max()print("最大的P值为:",max_p_value)if max_p_value < threshold:mark = Falseprint("最终模型:")print(model.summary())# 获取回归系数b = model.paramselse:max_p_feature = p_values.idxmax()print("最大的P值对应的特征为:",max_p_feature)# 从被选中的因素中去除included.remove(max_p_feature)print("更新后的因素为:",included)return included, b

5. 逐步回归的完整代码

import pandas as pd
import numpy as np
import statsmodels.api as sm# 数据
x1 = np.array([7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10])
x2 = np.array([26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68])
x3 = np.array([6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8])
x4 = np.array([60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12])
y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4])# 自变量矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})def stepwise_selection(X, y, initial_list=[], threshold=0.05,mark = True):# 初始化未被选中的因素excluded = list(initial_list)# 初始化被选中的因素included = list(set(X.columns) - set(excluded))while mark:# 拟合选中的因素model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()# 得出被选中的因素里P值最大的p_values = model.pvalues# 排除常数项(截距项)的P值p_values = p_values.drop('const')# 找到最大的P值及其对应的特征max_p_value = p_values.max()print("最大的P值为:",max_p_value)if max_p_value < threshold:mark = Falseprint("最终模型:")print(model.summary())# 获取回归系数b = model.paramselse:max_p_feature = p_values.idxmax()print("最大的P值对应的特征为:",max_p_feature)# 从被选中的因素中去除included.remove(max_p_feature)print("更新后的因素为:",included)return included, bresult, b = stepwise_selection(X, y)print(result)
print(b)

运行结果:

评估变量显著性的过程:
在这里插入图片描述

最终的模型:
在这里插入图片描述

回归系数:
在这里插入图片描述

6. 生成三维图的代码

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np# 计算Z的值
Z = b['const'] + b['x1'] * x1 + b['x2'] * x2# 创建一个新的3D绘图对象
fig = plt.figure()
'''
111 的具体含义是:
第一位 1:整个图形只有 1 行。
第二位 1:整个图形只有 1 列。
第三位 1:子图在这个 1x1 网格中的第 1 个位置。
'''
ax = fig.add_subplot(111, projection='3d')# 绘制散点图
ax.scatter(x1, x2, Z, c='r', marker='o', label='Data Points')# 创建网格以绘制曲面
x1_range = np.linspace(min(x1), max(x1), 100)
x2_range = np.linspace(min(x2), max(x2), 100)
x1_grid, x2_grid = np.meshgrid(x1_range, x2_range)# 计算曲面上的Z值
Z_surface = b['const'] + b['x1'] * x1_grid + b['x2'] * x2_grid# 绘制曲面图
'''
alpha意义:alpha 参数用于设置曲面的透明度。
取值范围:alpha 的取值范围是 0 到 1 之间。
0 表示完全透明,即不可见。
1 表示完全不透明。
作用:通过调整 alpha 参数,你可以在同一视图中更好地叠加多个图形,使得它们不会完全遮挡对方。cmap意义:cmap 参数用于设置曲面的颜色映射(colormap)。
常见的颜色映射:viridis, plasma, inferno, magma, cividis, jet, rainbow, coolwarm, hot 等。
作用:颜色映射用于根据 Z 值来着色曲面,帮助更清晰地展示高度或强度的变化。
'''
ax.plot_surface(x1_grid, x2_grid, Z_surface, alpha=0.5, cmap='viridis')# 设置标签
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Z')# 添加图例
ax.legend()# 显示图形
plt.show()

运行结果:

在这里插入图片描述

这篇关于【python】逐步回归(多元线性回归模型中的应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091317

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python中Tkinter GUI编程详细教程

《Python中TkinterGUI编程详细教程》Tkinter作为Python编程语言中构建GUI的一个重要组件,其教程对于任何希望将Python应用到实际编程中的开发者来说都是宝贵的资源,这篇文... 目录前言1. Tkinter 简介2. 第一个 Tkinter 程序3. 窗口和基础组件3.1 创建窗

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc