本文主要是介绍C++ 有向图拓扑排序算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
代码
#include <algorithm>
#include <cassert>
#include <functional>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <unordered_set>
#include <vector>namespace jc {template <typename K, typename V>struct DAGNode {K k;V v;std::set<DAGNode<K, V>*> in;std::set<DAGNode<K, V>*> out;};template <typename K, typename V>class DAGGraph {public:bool AddEdge(const K& from, const K& to);V& operator[](const K& key);bool Exist(const K& key) const;void Clear();std::size_t Size() const;void Walk(std::function<void(const K& k, const V& v)> f,bool start_from_head = true);void WalkHeads(std::function<void(const K& k, const V& v)> f);void WalkTails(std::function<void(const K& k, const V& v)> f);std::unordered_set<K> NextKeys();std::unordered_set<K> NextKeys(const K& key);private:bool IsCyclic(const DAGNode<K, V>& from, const DAGNode<K, V>& to) const;void RefreshWalkSequences();std::vector<std::set<K>> ConnectedComponents() const;void DFS(const K& k, std::unordered_set<K>* visited,std::set<K>* connected_components) const;std::vector<K> TopologicalSequence(const std::set<K>& connected_components,bool start_from_head) const;private:std::map<K, DAGNode<K, V>> bucket_;std::unordered_set<K> heads_;std::unordered_set<K> tails_;std::vector<std::vector<K>> sequences_start_from_head_;std::vector<std::vector<K>> sequences_start_from_tail_;private:bool allow_modify_ = true;std::vector<std::vector<K>> sequences_start_from_head_for_next_;std::unordered_set<K> current_heads_for_next_;};template <typename K, typename V>inline bool DAGGraph<K, V>::AddEdge(const K& from, const K& to) {assert(allow_modify_);if (from == to || !bucket_.count(from) || !bucket_.count(to) ||IsCyclic(bucket_.at(from), bucket_.at(to))) {return false;}bucket_.at(from).out.emplace(&bucket_.at(to));bucket_.at(to).in.emplace(&bucket_.at(from));heads_.erase(to);tails_.erase(from);sequences_start_from_head_.clear();sequences_start_from_tail_.clear();return true;}template <typename K, typename V>inline V& DAGGraph<K, V>::operator[](const K& key) {if (!bucket_.count(key)) {assert(allow_modify_);bucket_[key].k = key;heads_.emplace(key);tails_.emplace(key);sequences_start_from_head_.clear();sequences_start_from_tail_.clear();}return bucket_.at(key).v;}template <typename K, typename V>inline bool DAGGraph<K, V>::Exist(const K& key) const {return bucket_.count(key);}template <typename K, typename V>inline void DAGGraph<K, V>::Clear() {allow_modify_ = true;bucket_.clear();heads_.clear();tails_.clear();sequences_start_from_head_.clear();sequences_start_from_tail_.clear();}template <typename K, typename V>inline std::size_t DAGGraph<K, V>::Size() const {return bucket_.size();}template <typename K, typename V>inline void DAGGraph<K, V>::Walk(std::function<void(const K& k, const V& v)> f,bool start_from_head) {if (sequences_start_from_head_.empty()) {RefreshWalkSequences();}const std::vector<std::vector<K>>& seqs_to_walk =start_from_head ? sequences_start_from_head_ : sequences_start_from_tail_;for (const std::vector<K>& seq : seqs_to_walk) {std::for_each(std::begin(seq), std::end(seq), [&](const K& key) {const DAGNode<K, V>& node = bucket_.at(key);f(node.k, node.v);});}}template <typename K, typename V>inline void DAGGraph<K, V>::WalkHeads(std::function<void(const K& k, const V& v)> f) {if (sequences_start_from_head_.empty()) {RefreshWalkSequences();}for (const std::vector<K>& seq : sequences_start_from_head_) {std::for_each(std::begin(seq), std::end(seq), [&](const K& key) {if (heads_.count(key)) {const DAGNode<K, V>& node = bucket_.at(key);f(node.k, node.v);}});}}template <typename K, typename V>inline void DAGGraph<K, V>::WalkTails(std::function<void(const K& k, const V& v)> f) {if (sequences_start_from_head_.empty()) {RefreshWalkSequences();}for (const std::vector<K>& seq : sequences_start_from_tail_) {std::for_each(std::begin(seq), std::end(seq), [&](const K& key) {if (tails_.count(key)) {const DAGNode<K, V>& node = bucket_.at(key);f(node.k, node.v);}});}}template <typename K, typename V>inline std::unordered_set<K> DAGGraph<K, V>::NextKeys() {assert(allow_modify_); // allowed call once unless Clear()allow_modify_ = false;current_heads_for_next_ = heads_;if (sequences_start_from_head_.empty()) {RefreshWalkSequences();}return heads_;}template <typename K, typename V>inline std::unordered_set<K> DAGGraph<K, V>::NextKeys(const K& key) {assert(!allow_modify_); // must call NextKeys() beforeassert(current_heads_for_next_.count(key));current_heads_for_next_.erase(key);std::unordered_set<K> res;for (std::vector<K>& seq : sequences_start_from_head_for_next_) {auto it = std::find(begin(seq), std::end(seq), key);if (it == std::end(seq)) {continue;}seq.erase(it);const std::set<DAGNode<K, V>*>& nodes = bucket_.at(key).out;for (DAGNode<K, V>* v : nodes) {const std::set<DAGNode<K, V>*>& prev_nodes = v->in;bool no_prev_node_in_seq =std::all_of(std::begin(prev_nodes), std::end(prev_nodes),[&](DAGNode<K, V>* in_node) {return std::find(std::begin(seq), std::end(seq),in_node->k) == std::end(seq);});if (no_prev_node_in_seq) {current_heads_for_next_.emplace(v->k);res.emplace(v->k);}}break;}return res;}template <typename K, typename V>inline bool DAGGraph<K, V>::IsCyclic(const DAGNode<K, V>& from,const DAGNode<K, V>& to) const {std::queue<DAGNode<K, V>*> q;for (DAGNode<K, V>* v : from.in) {q.emplace(v);}std::unordered_set<DAGNode<K, V>*> visited;while (!q.empty()) {DAGNode<K, V>* node = q.front();q.pop();if (visited.count(node)) {continue;}if (node == &to) {return true;}visited.emplace(node);for (DAGNode<K, V>* v : node->in) {q.emplace(v);}}return false;}template <typename K, typename V>inline void DAGGraph<K, V>::RefreshWalkSequences() {sequences_start_from_head_.clear();sequences_start_from_tail_.clear();const std::vector<std::set<K>> connected_components = ConnectedComponents();for (const std::set<K>& x : connected_components) {const std::vector<K> seq_from_head = TopologicalSequence(x, true);const std::vector<K> seq_from_tail = TopologicalSequence(x, false);assert(!seq_from_head.empty());assert(!seq_from_tail.empty());sequences_start_from_head_.emplace_back(seq_from_head);sequences_start_from_tail_.emplace_back(seq_from_tail);}sequences_start_from_head_for_next_ = sequences_start_from_head_;}template <typename K, typename V>inline std::vector<std::set<K>> DAGGraph<K, V>::ConnectedComponents() const {std::vector<std::set<K>> res;std::unordered_set<K> visited;for (auto& x : bucket_) {std::set<K> tmp;DFS(x.second.k, &visited, &tmp);if (!tmp.empty()) {res.emplace_back(tmp);}}std::sort(std::begin(res), std::end(res),[&](const std::set<K>& lhs, const std::set<K>& rhs) {return lhs.size() < rhs.size();});return res;}template <typename K, typename V>inline void DAGGraph<K, V>::DFS(const K& k, std::unordered_set<K>* visited,std::set<K>* connected_components) const {if (visited->count(k)) {return;}visited->emplace(k);connected_components->emplace(k);if (!bucket_.at(k).in.empty()) {for (DAGNode<K, V>* v : bucket_.at(k).in) {DFS(v->k, visited, connected_components);}}if (!bucket_.at(k).out.empty()) {for (DAGNode<K, V>* v : bucket_.at(k).out) {DFS(v->k, visited, connected_components);}}}template <typename K, typename V>inline std::vector<K> DAGGraph<K, V>::TopologicalSequence(const std::set<K>& connected_components, bool start_from_head) const {std::map<K, std::vector<K>> adjacency_list;std::map<K, int32_t> in_degree;for (const K& key : connected_components) {if (!in_degree.count(key)) {in_degree.emplace(key, 0);}const std::set<DAGNode<K, V>*>& nodes =start_from_head ? bucket_.at(key).out : bucket_.at(key).in;for (DAGNode<K, V>* v : nodes) {adjacency_list[key].emplace_back(v->k);++in_degree[v->k];}}std::queue<K> q;for (auto& x : in_degree) {if (x.second == 0) {q.emplace(x.first);}}std::vector<K> res;while (!q.empty()) {const K key = q.front();q.pop();res.emplace_back(key);for (const K& k : adjacency_list[key]) {if (--in_degree.at(k) == 0) {q.emplace(k);}}}assert(res.size() == connected_components.size()); // graph is DAGreturn res;}} // namespace jcnamespace jc::test {class MockPipelineEngine {public:void Start() {}void Stop() {}void Destroy() {}};void test() {DAGGraph<int, std::unique_ptr<MockPipelineEngine>> d;// Make Direct Acyclic Graph:// 0 6 11 13// / \ | |// 1 3 7 8 12// | x | \ /// 2 4 9// \ / |// 5 10// Traverse each child graph in order whose size smaller// Start Order:// 13// 6 -> 7// 8 -> 11 -> 12 -> 9 -> 10// 0 -> 1 -> 3 -> 2 -> 4 -> 5// Stop Order:// 13// 7 -> 6// 10 -> 9 -> 8 -> 12 -> 11// 5 -> 2 -> 4 -> 1 -> 3 -> 0constexpr int nodes_count = 14;for (int i = 0; i < nodes_count; ++i) {d[i].reset(new MockPipelineEngine);}assert(d.AddEdge(0, 1));assert(d.AddEdge(0, 3));assert(d.AddEdge(1, 2));assert(d.AddEdge(3, 4));assert(d.AddEdge(1, 4));assert(d.AddEdge(3, 2));assert(d.AddEdge(2, 5));assert(d.AddEdge(4, 5));assert(d.AddEdge(6, 7));assert(d.AddEdge(8, 9));assert(d.AddEdge(9, 10));assert(d.AddEdge(11, 12));assert(d.AddEdge(12, 9));assert(d.Size() == nodes_count);for (int i = 0; i < nodes_count; ++i) {assert(d.Exist(i));}assert(!d.AddEdge(1, 0));assert(!d.AddEdge(2, 0));assert(!d.AddEdge(4, 0));assert(!d.AddEdge(7, 6));assert(!d.AddEdge(10, 11));assert(!d.AddEdge(13, 13));assert(!d.AddEdge(13, 14));constexpr bool start_from_head = true;{std::vector<int> v;std::vector<int> start_order{ 13, 6, 7, 8, 11, 12, 9, 10, 0, 1, 3, 2, 4, 5 };std::vector<int> start_order2{ 13, 6, 7, 8, 11, 12, 9, 10, 0, 3, 1, 4, 2, 5 };d.Walk([&](int key, const std::unique_ptr<MockPipelineEngine>& pipeline) {pipeline->Start();v.emplace_back(key);},start_from_head);assert(v == start_order || v == start_order2);}{std::vector<int> v;std::vector<int> stop_order{ 13, 7, 6, 10, 9, 8, 12, 11, 5, 2, 4, 1, 3, 0 };std::vector<int> stop_order2{ 13, 7, 6, 10, 9, 12, 8, 11, 5, 2, 4, 1, 3, 0 };d.Walk([&](int key, const std::unique_ptr<MockPipelineEngine>& pipeline) {pipeline->Stop();v.emplace_back(key);},!start_from_head);assert(v == stop_order || v == stop_order2);}{std::vector<int> v;std::vector<int> heads_order{ 13, 6, 8, 11, 0 };d.WalkHeads([&](int key, const std::unique_ptr<MockPipelineEngine>& pipeline) {pipeline->Destroy();v.emplace_back(key);});assert(v == heads_order);}{std::vector<int> v;std::vector<int> tails_order{ 13, 7, 10, 5 };d.WalkTails([&](int key, const std::unique_ptr<MockPipelineEngine>& pipeline) {pipeline->Destroy();v.emplace_back(key);});assert(v == tails_order);}{std::vector<int> test_sequence{ 13, 6, 7, 0, 1, 3, 4,2, 5, 8, 11, 12, 9, 10 };std::unordered_set<int> heads{ 0, 6, 8, 11, 13 };assert(d.NextKeys() == heads);std::vector<std::unordered_set<int>> next_keys{{}, {7}, {}, {1, 3}, {}, {2, 4}, {}, {5}, {}, {}, {12}, {9}, {10}, {},};assert(test_sequence.size() == nodes_count);assert(next_keys.size() == nodes_count);for (int i = 0; i < nodes_count; ++i) {assert(d.NextKeys(test_sequence[i]) == next_keys[i]);}}d.Clear();assert(d.Size() == 0);for (int i = 0; i < nodes_count; ++i) {assert(!d.Exist(i));}}} // namespace jc::test//int main() { jc::test::test(); }
效果
这篇关于C++ 有向图拓扑排序算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!