深度学习------------------卷积神经网络(LeNet)

2024-08-20 20:52

本文主要是介绍深度学习------------------卷积神经网络(LeNet),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • LeNet网络
    • 手写的数字识别
    • MNIST
    • 总结
    • 卷积神经网络(LeNet)
  • 问题

LeNet网络

在这里插入图片描述


手写的数字识别

在这里插入图片描述



MNIST

在这里插入图片描述




在这里插入图片描述

①输入的是:32×32的image
②放到一个5×5的卷积层里面(为什么是5?因为32-x+1=28,∴x=5),然后它的输出通道是6,6个通道数,高宽是28的输出。
③用一个Pooling层,2×2的Pooling层,就把28×28变成14×14了,通道数没变还是6。
④接下来又是一个卷积层,这个卷积层仍然是一个5×5的,(14-x+1=10,∴x=5),然后通道数由6变成16。
⑤之后再接一个Pooling层,高宽减半,通道数不变。
⑥然后把它拉成一个向量,输入到一个全连接层,第一个全连接是一个120,第二个是84,最后一个是高斯层。得到10个数字。

两个卷积层,两个池化层,两个全连接层,最后一个输出层




总结

    ①LeNet是早期成功的神经网络

    ②先使用卷积层来学习图片空间信息

    ③然后使用全连接层来转换到类别空间




卷积神经网络(LeNet)

LeNet(LeNet-5)由两个部分组成:卷积编码器全连接层密集块

import torch
from torch import nnclass Reshape(torch.nn.Module):def forward(self, x):return x.view(-1, 1, 28, 28)  # 批量数自适应得到,通道数为1,图片为28X28net = torch.nn.Sequential(# 将1×28×28的图片放到第一个卷积层里面,输入通道是1,输出通道是6,卷积核的尺寸是5×5,填充是2×2# 为了得到非线性,在卷积后面加了sigmoid激活函数Reshape(), nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),# 用均值池化层,步长为2nn.AvgPool2d(2, stride=2),# 卷积层输入是6,输出是16,kernel不变,然后在使用激活函数nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),# 在使用一个均值池化层,因为卷积层出来是一个4D的,把最后的通道数、高和宽变为一个一维的向量输入到多层感知机nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10))# 从区间 [0, 1) 上的均匀分布中随机抽取的浮点数。参数分别代表批量大小、通道数、高度和宽度
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
# 对每一层进行迭代
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)  # 上一层的输出为这一层的输入

结果:
在这里插入图片描述

经过卷积层和激活函数以及平均池化层为什么高度和宽度减半?

在卷积神经网络中,池化层(如AvgPool2d)用于减少数据的空间维度(即高度和宽度),从而减少计算量和参数数量,同时帮助网络学习到空间层次上的抽象特征。

AvgPool2d层的kernel_size(池化窗口大小)和stride(步长)都被设置为2。这意味着在每个2x2的区域内,池化操作会计算这四个值的平均值,并将结果作为该区域的输出。由于步长也是2,这意味着在水平和垂直方向上,每次池化操作都会跳过两个像素(或特征),因此输出特征图的高度和宽度都会减半。

例:有一个4x4的输入特征图

在这里插入图片描述

应用一个AvgPool2d(kernel_size=2, stride=2)层后,输出特征图将会是:

(1+2+5+6)/ 4 = 3.5
(3+4+7+8)/ 4 = 5.5
(9+10+13+14)/ 4 = 11.5
(11+12+15+16)/ 4 = 13.5

即:
3 5
11 13

输出特征图的大小从4x4变为了2x2,高度和宽度都减半了。故上述减半同理。



LeNet在Fashion-MNIST数据集上的表现

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)




要用GPU(CPU也是能跑的,LeNet的是CPU唯一能跑的网络)

# 接受三个参数:net(模型),data_iter(数据集迭代器),以及可选的device(设备,默认为None)
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save"""使用GPU计算模型在数据集上的精度"""# 检查net是否是nn.Module的实例if isinstance(net, nn.Module):net.eval()  # 设置为评估模式# 如果device参数没有被明确指定(即None),则通过获取模型参数的第一个元素的设备来确定device。#这确保了模型和数据将被发送到相同的设备上(CPU或GPU)。if not device:device = next(iter(net.parameters())).device# 创捷累加器,两个参数分别代表正确预测的数量,总预测的数量metric = d2l.Accumulator(2)# 使用torch.no_grad()上下文管理器来关闭梯度计算。在评估模型时,我们不需要计算梯度,这可以节省内存和计算资源。with torch.no_grad():# 每次迭代获取一批数据X和对应的标签y。for X, y in data_iter:# 检查X是否是列表。if isinstance(X, list):# BERT微调所需的(之后将介绍)# 如果是列表,则将列表中的每个元素都发送到device上。X = [x.to(device) for x in X]# 如果不是列表,则直接将X发送到device上。else:X = X.to(device)# 将标签y也发送到device上,以确保模型输入和标签都在同一设备上。y = y.to(device)# 计算当前批次数据的准确率,并将该准确率和当前批次的总样本数(y.numel())累加到metric中metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]



为了使用GPU,我们还需要一点小改动。与之前不同,在进行正向和反向传播之前,我们需要将每一小批量数据移动到我们指定的设备(例如GPU)上。

训练函数train_ch6将实现多层神经网络,因此我们将主要使用高级API。以下训练函数假定从高级API创建的模型作为输入,并进行相应的优化。使用Xavier随机初始化模型参数。与全连接层一样,我们使用交叉熵损失函数小批量随机梯度下降

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型(在第六章定义)"""def init_weights(m):# 如果是全连接层和卷积层的话,就使用Xavier均匀初始化if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)# 应用初始化权重到模型的所有层  net.apply(init_weights)# 打印训练设备print('training on', device)# 将模型移至指定设备 net.to(device)# 设置优化器,使用SGD(随机梯度下降)optimizer = torch.optim.SGD(net.parameters(), lr=lr)# 设置损失函数为交叉熵损失loss = nn.CrossEntropyLoss()# 初始化动画器,用于可视化训练过程animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])# 初始化计时器和获取训练迭代器的长度(即总批次数) timer, num_batches = d2l.Timer(), len(train_iter)# 训练循环for epoch in range(num_epochs):# 初始化用于训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)# 设置模型为训练模式 net.train()# 遍历训练迭代器中的每个批次for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()# 将数据和标签移至指定设备 (GPU)X, y = X.to(device), y.to(device)# 前向传播 y_hat = net(X)# 计算损失  l = loss(y_hat, y)# 反向传播l.backward()# 迭代更新参数optimizer.step()# 在不计算梯度的情况下计算准确率和累积损失、准确率、样本数with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()# 计算当前批次的训练损失和准确率train_l = metric[0] / metric[2]train_acc = metric[1] / metric[2]# 如果当前批次是每5个批次的最后一个或最后一个批次,则更新动画器if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))# 在每个epoch结束时,评估测试集上的准确率test_acc = evaluate_accuracy_gpu(net, test_iter)# 更新动画器以显示测试集准确率animator.add(epoch + 1, (None, None, test_acc))# 打印训练结束时的训练损失、训练准确率和测试准确率  print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')# 打印每秒处理的样本数和训练设备print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')

训练和评估LeNet-5模型

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果:

在这里插入图片描述




问题

为什么view而不用reshape呢?
本质上没什么区别,唯一不一样的是view对数据的构造不会发生变化,reshape可以对数据进行一些copy

这篇关于深度学习------------------卷积神经网络(LeNet)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091146

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操