小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源

本文主要是介绍小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小样本异常检测FSAD,一种适用于标注数据稀缺情况下的异常检测技术。在仅有少量标注数据的情况下,它比传统方法更能提高准确性和效率,是工业监控、医疗诊断等领域的关键技术。

目前FSAD还存在很多问题等我们解决,不过换个思路想,这些都是可挖掘的创新方向,而且已经有效果绝赞的成果可参考,比如GraphCore,突破工业视觉极限,减少冗余视觉特征的数量;再比如CAReg,首个全类别通用的开源FSAD方法,完美解决计算成本高且效率低的问题。

为了帮各位论文er省下查找资料的时间,我从中挑选了11个FSAD相关最新成果来和大家分享,idea都非常值得学习,当然开源代码也都整理了,大家有任何复现问题都可以来讨论~

论文原文+开源代码需要的同学看文末

Pushing the limits of few-shot anomaly detection in industry vision: GraphCore

方法:作者针对工业产品的少样本视觉异常检测提出一种新方法GraphCore,通过提取视觉同构不变特征(VIIF)来进行异常测量,实验结果表明该方法在MVTec AD和MPDD数据集上的性能显著优于现有方法,并且只需极少量的正常样本进行训练。

创新点:

  • 提出了一种特征增强的方法,用于研究由CNN生成的视觉特征的属性。

  • 提出了一种名为GraphCore的新的FSAD方法,通过使用少量正常样本进行快速训练,实现了新产品的竞争性AD准确性表现,并且能够防止旧产品的异常迁移和适应。

  • 提出了一种新的模型VIIG,可以从少量正常样本中提取视觉等距不变特征(VIIF),并将其添加到特征存储器中,从而提高了异常检测的准确性。

Few-Shot Anomaly Detection via Category-Agnostic Registration Learning

方法:论文提出了一种新颖的少样本异常检测方法,称为CAReg,通过学习通用的跨类别注册技术,仅使用每个类别的正常图像进行训练,从而实现了对新类别的无需微调的模型应用,提高了异常检测的准确性和效率。

创新点:

  • 引入了一种类别无关的异常检测模型:通过将异常检测建模为一个比较任务,模型可以在不需要了解图像类别的情况下进行异常检测。通过特征级别的配准,模型可以将不同类别的图像进行比较,从而实现跨类别的异常检测。

  • 提出了一种基于Siamese网络和空间变换网络的特征配准模块:通过特征级别的配准,模型可以将不同类别的图像进行对齐,从而提高模型的泛化能力和鲁棒性。

Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts

方法:论文提出了一种名为 InCTRL 的新型小样本异常检测方法,旨在训练一个能够泛化到不同应用领域数据集的通用异常检测模型,而无需在目标数据上进行进一步训练。InCTRL通过对查询图像和少量正常样本提示之间的残差进行整体评估,实现了优秀的GAD泛化能力。

创新点:

  • 引入了GAD任务,用于评估AD方法在不需要在目标数据集上进行训练/调优的情况下,在各种场景下识别异常的泛化能力。

  • 提出了一种名为InCTRL的方法来解决这个问题。InCTRL通过在上下文中进行残差学习来实现优越的GAD泛化。通过图像级别和补丁级别的残差学习,InCTRL能够更好地捕捉查询图像和少样本正常样本之间的局部和全局差异。

  • InCTRL允许将文本提示引导的正常/异常先验知识无缝整合到检测模型中,为文本-图像对齐的语义空间提供了额外的优势。

Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection

方法:论文提出了一种新的分割模型,利用少量标记图像和正常图像之间共享的逻辑约束。作还提出了一种新颖的AD方法,其中包括基于分割的构建3个不同存储器的方法。为了生成统一的异常分数,作者引入了自适应缩放策略,这样该模型能够检测LA和SA,并且在用户所需的最小工作量下取得了显著的改进。

创新点:

  • 利用部分分割进行异常检测(PSAD):提出了一种新的异常检测方法,使用三个不同的内存库,利用视觉特征和语义分割来检测元素的局部和全局依赖关系。

  • 自适应缩放方法:提出了一种自适应缩放方法,用于聚合具有不同尺度的异常分数,以确保可以可靠地比较分数。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“FSAD”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

这篇关于小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091068

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验