小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源

本文主要是介绍小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小样本异常检测FSAD,一种适用于标注数据稀缺情况下的异常检测技术。在仅有少量标注数据的情况下,它比传统方法更能提高准确性和效率,是工业监控、医疗诊断等领域的关键技术。

目前FSAD还存在很多问题等我们解决,不过换个思路想,这些都是可挖掘的创新方向,而且已经有效果绝赞的成果可参考,比如GraphCore,突破工业视觉极限,减少冗余视觉特征的数量;再比如CAReg,首个全类别通用的开源FSAD方法,完美解决计算成本高且效率低的问题。

为了帮各位论文er省下查找资料的时间,我从中挑选了11个FSAD相关最新成果来和大家分享,idea都非常值得学习,当然开源代码也都整理了,大家有任何复现问题都可以来讨论~

论文原文+开源代码需要的同学看文末

Pushing the limits of few-shot anomaly detection in industry vision: GraphCore

方法:作者针对工业产品的少样本视觉异常检测提出一种新方法GraphCore,通过提取视觉同构不变特征(VIIF)来进行异常测量,实验结果表明该方法在MVTec AD和MPDD数据集上的性能显著优于现有方法,并且只需极少量的正常样本进行训练。

创新点:

  • 提出了一种特征增强的方法,用于研究由CNN生成的视觉特征的属性。

  • 提出了一种名为GraphCore的新的FSAD方法,通过使用少量正常样本进行快速训练,实现了新产品的竞争性AD准确性表现,并且能够防止旧产品的异常迁移和适应。

  • 提出了一种新的模型VIIG,可以从少量正常样本中提取视觉等距不变特征(VIIF),并将其添加到特征存储器中,从而提高了异常检测的准确性。

Few-Shot Anomaly Detection via Category-Agnostic Registration Learning

方法:论文提出了一种新颖的少样本异常检测方法,称为CAReg,通过学习通用的跨类别注册技术,仅使用每个类别的正常图像进行训练,从而实现了对新类别的无需微调的模型应用,提高了异常检测的准确性和效率。

创新点:

  • 引入了一种类别无关的异常检测模型:通过将异常检测建模为一个比较任务,模型可以在不需要了解图像类别的情况下进行异常检测。通过特征级别的配准,模型可以将不同类别的图像进行比较,从而实现跨类别的异常检测。

  • 提出了一种基于Siamese网络和空间变换网络的特征配准模块:通过特征级别的配准,模型可以将不同类别的图像进行对齐,从而提高模型的泛化能力和鲁棒性。

Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts

方法:论文提出了一种名为 InCTRL 的新型小样本异常检测方法,旨在训练一个能够泛化到不同应用领域数据集的通用异常检测模型,而无需在目标数据上进行进一步训练。InCTRL通过对查询图像和少量正常样本提示之间的残差进行整体评估,实现了优秀的GAD泛化能力。

创新点:

  • 引入了GAD任务,用于评估AD方法在不需要在目标数据集上进行训练/调优的情况下,在各种场景下识别异常的泛化能力。

  • 提出了一种名为InCTRL的方法来解决这个问题。InCTRL通过在上下文中进行残差学习来实现优越的GAD泛化。通过图像级别和补丁级别的残差学习,InCTRL能够更好地捕捉查询图像和少样本正常样本之间的局部和全局差异。

  • InCTRL允许将文本提示引导的正常/异常先验知识无缝整合到检测模型中,为文本-图像对齐的语义空间提供了额外的优势。

Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection

方法:论文提出了一种新的分割模型,利用少量标记图像和正常图像之间共享的逻辑约束。作还提出了一种新颖的AD方法,其中包括基于分割的构建3个不同存储器的方法。为了生成统一的异常分数,作者引入了自适应缩放策略,这样该模型能够检测LA和SA,并且在用户所需的最小工作量下取得了显著的改进。

创新点:

  • 利用部分分割进行异常检测(PSAD):提出了一种新的异常检测方法,使用三个不同的内存库,利用视觉特征和语义分割来检测元素的局部和全局依赖关系。

  • 自适应缩放方法:提出了一种自适应缩放方法,用于聚合具有不同尺度的异常分数,以确保可以可靠地比较分数。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“FSAD”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

这篇关于小样本异常检测新突破!全新FSAD方法全类别通用,idea代码已开源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091068

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注