Android SurfaceFlinger——图形内存分配器(十一)

2024-06-24 11:44

本文主要是介绍Android SurfaceFlinger——图形内存分配器(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        前面的文章中的图层合成器(HWC),这里我们接着看一下 SurfaceFlinger 中的另一个重要服务——图形内存分配器。

一、简介

        android.hardware.graphics.allocator@2.0 是 Android 系统中硬件抽象层(HAL)的一个组件,专门用于图形内存的分配和管理。它是 SurfaceFlinger 在处理图形数据时所依赖的关键服务之一,确保了高效、安全地为屏幕显示、图形渲染等操作提供所需的内存资源。

核心功能

  • 内存分配:根据应用程序或系统组件的需求,分配特定格式、尺寸和数量的图形缓冲区(Graphic Buffer)。这些缓冲区用于存储图像数据,如 UI 元素、视频帧等。
  • 性能优化:通过合理的内存布局和对齐方式,确保快速访问和高效渲染,减少 CPU 和 GPU 之间的数据传输瓶颈。
  • 兼容性:提供了一套统一的接口,使得上层软件可以不关心底层硬件的具体实现,提高了代码的可移植性和兼容性。
  • 资源管理:管理图形缓冲区的生命周期,包括创建、分配、回收和重用,以减少内存碎片和提高内存利用率。
  • 安全性:确保只有经过验证的客户端可以请求和操作图形缓冲区,防止未授权访问,保障系统安全。

工作流程

  • 请求分配:当一个应用或者系统组件(如 SurfaceFlinger)需要一个新的图形缓冲区时,它会通过 HAL 接口向 android.hardware.graphics.allocator@2.0 发出请求,指定所需缓冲区的属性(如尺寸、格式)。
  • 分配与配置:allocator 根据请求的参数,在可用的内存资源中分配相应大小的内存块,并设置好缓冲区的布局(如步长,即每行像素的字节数),确保与硬件的高效交互。
  • 使用与回收:分配好的缓冲区会被上层应用用于绘制图形内容,一旦完成绘制或不再需要,应通过调用相应的接口将其标记为可回收,以便 allocator 适时回收资源。

与SF关系

  • SurfaceFlinger 利用 android.hardware.graphics.allocator@2.0 分配的缓冲区来合成来自不同应用的 Surface 内容。每个 Surface 代表一个应用的可视部分,SurfaceFlinger 将这些 Surface 按照正确的顺序和位置合成到一起,形成最终的屏幕显示图像。
  • 在这个过程中,allocator 确保了即使在资源紧张的情况下也能高效地提供足够的缓冲区供 SurfaceFlinger 使用,从而保证了图形显示的流畅性和系统整体的性能。

        总之,android.hardware.graphics.allocator@2.0 作为 Android 图形子系统中的基础设施,对于维持图形显示的高效、稳定和安全起着至关重要的作用。

二、服务初始化

        这里以 allocator2.0 为例,HAL 服务的“启动”同样是通过系统框架和 HIDL 机制间接触发,最终调用的 service.cpp 中的入口函数。

1、service.cpp

源码位置:/hardware/interfaces/graphics/allocator/2.0/default/service.cpp

#define LOG_TAG "android.hardware.graphics.allocator@2.0-service"#include <android/hardware/graphics/allocator/2.0/IAllocator.h>#include <hidl/LegacySupport.h>using android::hardware::defaultPassthroughServiceImplementation;
using android::hardware::graphics::allocator::V2_0::IAllocator;int main() {return defaultPassthroughServiceImplementation<IAllocator>(4);
}

        这里采用的是 passthrough(直通)模式启动 allocator 服务,整个代码的核心是调用了 defaultPassthroughServiceImplementation() 函数来实现 IAllocator 服务。

2、LegacySupport.h

源码位置:/system/libhidl/transport/include/hidl/LegacySupport.h

template <class Interface, class ExpectInterface = Interface>
__attribute__((warn_unused_result)) status_t defaultPassthroughServiceImplementation(size_t maxThreads = 1) {return defaultPassthroughServiceImplementation<Interface, ExpectInterface>("default", maxThreads);
}/*** 创建默认的直通服务实现* 返回值为退出状态*/
template <class Interface, class ExpectInterface = Interface>
__attribute__((warn_unused_result)) status_t defaultPassthroughServiceImplementation(const std::string& name, size_t maxThreads = 1) {// 初始化RPC线程池,maxThreads指定了线程池中线程的最大数量configureRpcThreadpool(maxThreads, true);// 注册服务status_t result = registerPassthroughServiceImplementation<Interface, ExpectInterface>(name);if (result != OK) {return result;}// 等待所有RPC线程完成工作后退出joinRpcThreadpool();return UNKNOWN_ERROR;
}

        这是一个模板函数,用于设置并启动一个基于 HIDL 的直通(passthrough)服务实现。

3、IAllocator.hal

源码位置:/hardware/interfaces/graphics/allocator/2.0/IAllocator.hal

interface IAllocator {
/*** 检索实现定义的调试信息** @return debugInfo是一个调试信息字符串。*/
dumpDebugInfo() generates (string debugInfo);/*** 使用描述符指定的属性分配缓冲区。** @param descriptor 指定要分配的缓冲区的属性* @param count 分配的缓冲区数量* @return NONE 成功*         BAD_DESCRIPTOR 描述符无效*         NO_RESOURCES 无法完成分配*         UNSUPPORTED 不支持描述符中的属性* @return stride 缓冲区的两个连续行之间的像素数(定义了连续行的概念)* @return buffers 新分配缓冲区的原始句柄数组*/
allocate(BufferDescriptor descriptor, uint32_t count)generates (Error error, uint32_t stride, vec<handle> buffers);
};

        IAllocator 接口定义了 Hal 层的相关方法。

4、Allocator.h

源码位置:/hardware/interfaces/graphics/allocator/2.0/utils/hal/include/allocator-hal/2.0/Allocator.h

namespace detail {template <typename Interface, typename Hal>
class AllocatorImpl : public Interface {public:// 初始化方法bool init(std::unique_ptr<Hal> hal) {mHal = std::move(hal);return true;}// IAllocator 2.0 interfaceReturn<void> dumpDebugInfo(IAllocator::dumpDebugInfo_cb hidl_cb) override {hidl_cb(mHal->dumpDebugInfo());return Void();}Return<void> allocate(const BufferDescriptor& descriptor, uint32_t count,IAllocator::allocate_cb hidl_cb) override {uint32_t stride;std::vector<const native_handle_t*> buffers;Error error = mHal->allocateBuffers(descriptor, count, &stride, &buffers);if (error != Error::NONE) {hidl_cb(error, 0, hidl_vec<hidl_handle>());return Void();}hidl_vec<hidl_handle> hidlBuffers(buffers.cbegin(), buffers.cend());hidl_cb(Error::NONE, stride, hidlBuffers);// free the local handlesmHal->freeBuffers(buffers);return Void();}protected:std::unique_ptr<Hal> mHal;
};}  // namespace detailusing Allocator = detail::AllocatorImpl<IAllocator, AllocatorHal>;

        allocate() 函数实现了内存分配的核心逻辑,根据 descriptor 和 count 调用 Hal 的 allocateBuffers() 方法分配内存,处理结果后通过 HIDL 回调返回。

5、Gralloc1Hal.h

源码位置:/hardware/interfaces/graphics/allocator/2.0/utils/passthrough/include/allocator-passthrough/2.0/Gralloc1Hal.h

Error allocateBuffers(const BufferDescriptor& descriptor, uint32_t count, uint32_t* outStride,std::vector<const native_handle_t*>* outBuffers) override {mapper::V2_0::IMapper::BufferDescriptorInfo descriptorInfo;// 解析传入的BufferDescriptorif (!grallocDecodeBufferDescriptor(descriptor, &descriptorInfo)) {return Error::BAD_DESCRIPTOR;}gralloc1_buffer_descriptor_t desc;// 创建描述符Error error = createDescriptor(descriptorInfo, &desc);if (error != Error::NONE) {return error;}uint32_t stride = 0;std::vector<const native_handle_t*> buffers;buffers.reserve(count);// 分配缓冲区for (uint32_t i = 0; i < count; i++) {const native_handle_t* tmpBuffer;uint32_t tmpStride;// 分配单个缓冲区error = allocateOneBuffer(desc, &tmpBuffer, &tmpStride);if (error != Error::NONE) {break;}buffers.push_back(tmpBuffer);if (stride == 0) {stride = tmpStride;} else if (stride != tmpStride) {// non-uniform strideserror = Error::UNSUPPORTED;break;}}// 销毁之前创建的描述符mDispatch.destroyDescriptor(mDevice, desc);if (error != Error::NONE) {// 释放已分配的缓冲区freeBuffers(buffers);return error;}*outStride = stride;*outBuffers = std::move(buffers);return Error::NONE;
}

        该函数主要用于图形内存管理,确保了按需分配多个缓冲区的同时,也保持了对内存资源的有效管理与一致性检查。

allocateOneBuffer

Error allocateOneBuffer(gralloc1_buffer_descriptor_t descriptor,const native_handle_t** outBuffer, uint32_t* outStride) {const native_handle_t* buffer = nullptr;// 从设备mDevice分配一个缓冲区int32_t error = mDispatch.allocate(mDevice, 1, &descriptor, &buffer);if (error != GRALLOC1_ERROR_NONE && error != GRALLOC1_ERROR_NOT_SHARED) {return toError(error);}uint32_t stride = 0;// 获取该缓冲区的行跨度error = mDispatch.getStride(mDevice, buffer, &stride);if (error != GRALLOC1_ERROR_NONE && error != GRALLOC1_ERROR_UNDEFINED) {mDispatch.release(mDevice, buffer);return toError(error);}*outBuffer = buffer;*outStride = stride;return Error::NONE;
}// 指向各种图形缓冲区管理函数的函数指针
struct {GRALLOC1_PFN_DUMP dump;GRALLOC1_PFN_CREATE_DESCRIPTOR createDescriptor;GRALLOC1_PFN_DESTROY_DESCRIPTOR destroyDescriptor;GRALLOC1_PFN_SET_DIMENSIONS setDimensions;GRALLOC1_PFN_SET_FORMAT setFormat;GRALLOC1_PFN_SET_LAYER_COUNT setLayerCount;GRALLOC1_PFN_SET_CONSUMER_USAGE setConsumerUsage;GRALLOC1_PFN_SET_PRODUCER_USAGE setProducerUsage;GRALLOC1_PFN_GET_STRIDE getStride;GRALLOC1_PFN_ALLOCATE allocate;GRALLOC1_PFN_RELEASE release;
} mDispatch = {};

        该函数主要封装了与硬件抽象层交互的过程,从硬件抽象层(HAL)分配单个图形缓冲区,并获取该缓冲区的行跨度(stride)。

6、gralloc1.h

源码位置:/hardware/libhardware/include/hardware/gralloc1.h

/** 缓冲区管理功能*/
typedef int32_t /*gralloc1_error_t*/ (*GRALLOC1_PFN_ALLOCATE)(gralloc1_device_t* device, uint32_t numDescriptors,const gralloc1_buffer_descriptor_t* descriptors, buffer_handle_t* outBuffers);

        这个函数的主要作用是从指定的图形设备中分配指定数量和属性的图形缓冲区。它是图形渲染、图像处理等操作的基础,确保应用程序能够高效、安全地访问和管理图形内存。通过错误码返回机制,调用者可以得知分配操作是否成功及失败原因,从而做出相应的处理决策。

这篇关于Android SurfaceFlinger——图形内存分配器(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090057

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Android里面的Service种类以及启动方式

《Android里面的Service种类以及启动方式》Android中的Service分为前台服务和后台服务,前台服务需要亮身份牌并显示通知,后台服务则有启动方式选择,包括startService和b... 目录一句话总结:一、Service 的两种类型:1. 前台服务(必须亮身份牌)2. 后台服务(偷偷干

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int