Android SurfaceFlinger——图形内存分配器(十一)

2024-06-24 11:44

本文主要是介绍Android SurfaceFlinger——图形内存分配器(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        前面的文章中的图层合成器(HWC),这里我们接着看一下 SurfaceFlinger 中的另一个重要服务——图形内存分配器。

一、简介

        android.hardware.graphics.allocator@2.0 是 Android 系统中硬件抽象层(HAL)的一个组件,专门用于图形内存的分配和管理。它是 SurfaceFlinger 在处理图形数据时所依赖的关键服务之一,确保了高效、安全地为屏幕显示、图形渲染等操作提供所需的内存资源。

核心功能

  • 内存分配:根据应用程序或系统组件的需求,分配特定格式、尺寸和数量的图形缓冲区(Graphic Buffer)。这些缓冲区用于存储图像数据,如 UI 元素、视频帧等。
  • 性能优化:通过合理的内存布局和对齐方式,确保快速访问和高效渲染,减少 CPU 和 GPU 之间的数据传输瓶颈。
  • 兼容性:提供了一套统一的接口,使得上层软件可以不关心底层硬件的具体实现,提高了代码的可移植性和兼容性。
  • 资源管理:管理图形缓冲区的生命周期,包括创建、分配、回收和重用,以减少内存碎片和提高内存利用率。
  • 安全性:确保只有经过验证的客户端可以请求和操作图形缓冲区,防止未授权访问,保障系统安全。

工作流程

  • 请求分配:当一个应用或者系统组件(如 SurfaceFlinger)需要一个新的图形缓冲区时,它会通过 HAL 接口向 android.hardware.graphics.allocator@2.0 发出请求,指定所需缓冲区的属性(如尺寸、格式)。
  • 分配与配置:allocator 根据请求的参数,在可用的内存资源中分配相应大小的内存块,并设置好缓冲区的布局(如步长,即每行像素的字节数),确保与硬件的高效交互。
  • 使用与回收:分配好的缓冲区会被上层应用用于绘制图形内容,一旦完成绘制或不再需要,应通过调用相应的接口将其标记为可回收,以便 allocator 适时回收资源。

与SF关系

  • SurfaceFlinger 利用 android.hardware.graphics.allocator@2.0 分配的缓冲区来合成来自不同应用的 Surface 内容。每个 Surface 代表一个应用的可视部分,SurfaceFlinger 将这些 Surface 按照正确的顺序和位置合成到一起,形成最终的屏幕显示图像。
  • 在这个过程中,allocator 确保了即使在资源紧张的情况下也能高效地提供足够的缓冲区供 SurfaceFlinger 使用,从而保证了图形显示的流畅性和系统整体的性能。

        总之,android.hardware.graphics.allocator@2.0 作为 Android 图形子系统中的基础设施,对于维持图形显示的高效、稳定和安全起着至关重要的作用。

二、服务初始化

        这里以 allocator2.0 为例,HAL 服务的“启动”同样是通过系统框架和 HIDL 机制间接触发,最终调用的 service.cpp 中的入口函数。

1、service.cpp

源码位置:/hardware/interfaces/graphics/allocator/2.0/default/service.cpp

#define LOG_TAG "android.hardware.graphics.allocator@2.0-service"#include <android/hardware/graphics/allocator/2.0/IAllocator.h>#include <hidl/LegacySupport.h>using android::hardware::defaultPassthroughServiceImplementation;
using android::hardware::graphics::allocator::V2_0::IAllocator;int main() {return defaultPassthroughServiceImplementation<IAllocator>(4);
}

        这里采用的是 passthrough(直通)模式启动 allocator 服务,整个代码的核心是调用了 defaultPassthroughServiceImplementation() 函数来实现 IAllocator 服务。

2、LegacySupport.h

源码位置:/system/libhidl/transport/include/hidl/LegacySupport.h

template <class Interface, class ExpectInterface = Interface>
__attribute__((warn_unused_result)) status_t defaultPassthroughServiceImplementation(size_t maxThreads = 1) {return defaultPassthroughServiceImplementation<Interface, ExpectInterface>("default", maxThreads);
}/*** 创建默认的直通服务实现* 返回值为退出状态*/
template <class Interface, class ExpectInterface = Interface>
__attribute__((warn_unused_result)) status_t defaultPassthroughServiceImplementation(const std::string& name, size_t maxThreads = 1) {// 初始化RPC线程池,maxThreads指定了线程池中线程的最大数量configureRpcThreadpool(maxThreads, true);// 注册服务status_t result = registerPassthroughServiceImplementation<Interface, ExpectInterface>(name);if (result != OK) {return result;}// 等待所有RPC线程完成工作后退出joinRpcThreadpool();return UNKNOWN_ERROR;
}

        这是一个模板函数,用于设置并启动一个基于 HIDL 的直通(passthrough)服务实现。

3、IAllocator.hal

源码位置:/hardware/interfaces/graphics/allocator/2.0/IAllocator.hal

interface IAllocator {
/*** 检索实现定义的调试信息** @return debugInfo是一个调试信息字符串。*/
dumpDebugInfo() generates (string debugInfo);/*** 使用描述符指定的属性分配缓冲区。** @param descriptor 指定要分配的缓冲区的属性* @param count 分配的缓冲区数量* @return NONE 成功*         BAD_DESCRIPTOR 描述符无效*         NO_RESOURCES 无法完成分配*         UNSUPPORTED 不支持描述符中的属性* @return stride 缓冲区的两个连续行之间的像素数(定义了连续行的概念)* @return buffers 新分配缓冲区的原始句柄数组*/
allocate(BufferDescriptor descriptor, uint32_t count)generates (Error error, uint32_t stride, vec<handle> buffers);
};

        IAllocator 接口定义了 Hal 层的相关方法。

4、Allocator.h

源码位置:/hardware/interfaces/graphics/allocator/2.0/utils/hal/include/allocator-hal/2.0/Allocator.h

namespace detail {template <typename Interface, typename Hal>
class AllocatorImpl : public Interface {public:// 初始化方法bool init(std::unique_ptr<Hal> hal) {mHal = std::move(hal);return true;}// IAllocator 2.0 interfaceReturn<void> dumpDebugInfo(IAllocator::dumpDebugInfo_cb hidl_cb) override {hidl_cb(mHal->dumpDebugInfo());return Void();}Return<void> allocate(const BufferDescriptor& descriptor, uint32_t count,IAllocator::allocate_cb hidl_cb) override {uint32_t stride;std::vector<const native_handle_t*> buffers;Error error = mHal->allocateBuffers(descriptor, count, &stride, &buffers);if (error != Error::NONE) {hidl_cb(error, 0, hidl_vec<hidl_handle>());return Void();}hidl_vec<hidl_handle> hidlBuffers(buffers.cbegin(), buffers.cend());hidl_cb(Error::NONE, stride, hidlBuffers);// free the local handlesmHal->freeBuffers(buffers);return Void();}protected:std::unique_ptr<Hal> mHal;
};}  // namespace detailusing Allocator = detail::AllocatorImpl<IAllocator, AllocatorHal>;

        allocate() 函数实现了内存分配的核心逻辑,根据 descriptor 和 count 调用 Hal 的 allocateBuffers() 方法分配内存,处理结果后通过 HIDL 回调返回。

5、Gralloc1Hal.h

源码位置:/hardware/interfaces/graphics/allocator/2.0/utils/passthrough/include/allocator-passthrough/2.0/Gralloc1Hal.h

Error allocateBuffers(const BufferDescriptor& descriptor, uint32_t count, uint32_t* outStride,std::vector<const native_handle_t*>* outBuffers) override {mapper::V2_0::IMapper::BufferDescriptorInfo descriptorInfo;// 解析传入的BufferDescriptorif (!grallocDecodeBufferDescriptor(descriptor, &descriptorInfo)) {return Error::BAD_DESCRIPTOR;}gralloc1_buffer_descriptor_t desc;// 创建描述符Error error = createDescriptor(descriptorInfo, &desc);if (error != Error::NONE) {return error;}uint32_t stride = 0;std::vector<const native_handle_t*> buffers;buffers.reserve(count);// 分配缓冲区for (uint32_t i = 0; i < count; i++) {const native_handle_t* tmpBuffer;uint32_t tmpStride;// 分配单个缓冲区error = allocateOneBuffer(desc, &tmpBuffer, &tmpStride);if (error != Error::NONE) {break;}buffers.push_back(tmpBuffer);if (stride == 0) {stride = tmpStride;} else if (stride != tmpStride) {// non-uniform strideserror = Error::UNSUPPORTED;break;}}// 销毁之前创建的描述符mDispatch.destroyDescriptor(mDevice, desc);if (error != Error::NONE) {// 释放已分配的缓冲区freeBuffers(buffers);return error;}*outStride = stride;*outBuffers = std::move(buffers);return Error::NONE;
}

        该函数主要用于图形内存管理,确保了按需分配多个缓冲区的同时,也保持了对内存资源的有效管理与一致性检查。

allocateOneBuffer

Error allocateOneBuffer(gralloc1_buffer_descriptor_t descriptor,const native_handle_t** outBuffer, uint32_t* outStride) {const native_handle_t* buffer = nullptr;// 从设备mDevice分配一个缓冲区int32_t error = mDispatch.allocate(mDevice, 1, &descriptor, &buffer);if (error != GRALLOC1_ERROR_NONE && error != GRALLOC1_ERROR_NOT_SHARED) {return toError(error);}uint32_t stride = 0;// 获取该缓冲区的行跨度error = mDispatch.getStride(mDevice, buffer, &stride);if (error != GRALLOC1_ERROR_NONE && error != GRALLOC1_ERROR_UNDEFINED) {mDispatch.release(mDevice, buffer);return toError(error);}*outBuffer = buffer;*outStride = stride;return Error::NONE;
}// 指向各种图形缓冲区管理函数的函数指针
struct {GRALLOC1_PFN_DUMP dump;GRALLOC1_PFN_CREATE_DESCRIPTOR createDescriptor;GRALLOC1_PFN_DESTROY_DESCRIPTOR destroyDescriptor;GRALLOC1_PFN_SET_DIMENSIONS setDimensions;GRALLOC1_PFN_SET_FORMAT setFormat;GRALLOC1_PFN_SET_LAYER_COUNT setLayerCount;GRALLOC1_PFN_SET_CONSUMER_USAGE setConsumerUsage;GRALLOC1_PFN_SET_PRODUCER_USAGE setProducerUsage;GRALLOC1_PFN_GET_STRIDE getStride;GRALLOC1_PFN_ALLOCATE allocate;GRALLOC1_PFN_RELEASE release;
} mDispatch = {};

        该函数主要封装了与硬件抽象层交互的过程,从硬件抽象层(HAL)分配单个图形缓冲区,并获取该缓冲区的行跨度(stride)。

6、gralloc1.h

源码位置:/hardware/libhardware/include/hardware/gralloc1.h

/** 缓冲区管理功能*/
typedef int32_t /*gralloc1_error_t*/ (*GRALLOC1_PFN_ALLOCATE)(gralloc1_device_t* device, uint32_t numDescriptors,const gralloc1_buffer_descriptor_t* descriptors, buffer_handle_t* outBuffers);

        这个函数的主要作用是从指定的图形设备中分配指定数量和属性的图形缓冲区。它是图形渲染、图像处理等操作的基础,确保应用程序能够高效、安全地访问和管理图形内存。通过错误码返回机制,调用者可以得知分配操作是否成功及失败原因,从而做出相应的处理决策。

这篇关于Android SurfaceFlinger——图形内存分配器(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090057

相关文章

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

Eclipse+ADT与Android Studio开发的区别

下文的EA指Eclipse+ADT,AS就是指Android Studio。 就编写界面布局来说AS可以边开发边预览(所见即所得,以及多个屏幕预览),这个优势比较大。AS运行时占的内存比EA的要小。AS创建项目时要创建gradle项目框架,so,创建项目时AS比较慢。android studio基于gradle构建项目,你无法同时集中管理和维护多个项目的源码,而eclipse ADT可以同时打开

android 免费短信验证功能

没有太复杂的使用的话,功能实现比较简单粗暴。 在www.mob.com网站中可以申请使用免费短信验证功能。 步骤: 1.注册登录。 2.选择“短信验证码SDK” 3.下载对应的sdk包,我这是选studio的。 4.从头像那进入后台并创建短信验证应用,获取到key跟secret 5.根据技术文档操作(initSDK方法写在setContentView上面) 6.关键:在有用到的Mo

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

Android我的二维码扫描功能发展史(完整)

最近在研究下二维码扫描功能,跟据从网上查阅的资料到自己勉强已实现扫描功能来一一介绍我的二维码扫描功能实现的发展历程: 首页通过网络搜索发现做android二维码扫描功能看去都是基于google的ZXing项目开发。 2、搜索怎么使用ZXing实现自己的二维码扫描:从网上下载ZXing-2.2.zip以及core-2.2-source.jar文件,分别解压两个文件。然后把.jar解压出来的整个c

android 带与不带logo的二维码生成

该代码基于ZXing项目,这个网上能下载得到。 定义的控件以及属性: public static final int SCAN_CODE = 1;private ImageView iv;private EditText et;private Button qr_btn,add_logo;private Bitmap logo,bitmap,bmp; //logo图标private st

Android多线程下载见解

通过for循环开启N个线程,这是多线程,但每次循环都new一个线程肯定很耗内存的。那可以改用线程池来。 就以我个人对多线程下载的理解是开启一个线程后: 1.通过HttpUrlConnection对象获取要下载文件的总长度 2.通过RandomAccessFile流对象在本地创建一个跟远程文件长度一样大小的空文件。 3.通过文件总长度/线程个数=得到每个线程大概要下载的量(线程块大小)。

时间服务器中,适用于国内的 NTP 服务器地址,可用于时间同步或 Android 加速 GPS 定位

NTP 是什么?   NTP 是网络时间协议(Network Time Protocol),它用来同步网络设备【如计算机、手机】的时间的协议。 NTP 实现什么目的?   目的很简单,就是为了提供准确时间。因为我们的手表、设备等,经常会时间跑着跑着就有误差,或快或慢的少几秒,时间长了甚至误差过分钟。 NTP 服务器列表 最常见、熟知的就是 www.pool.ntp.org/zo

高仿精仿愤怒的小鸟android版游戏源码

这是一款很完美的高仿精仿愤怒的小鸟android版游戏源码,大家可以研究一下吧、 为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,仿佛炮弹一样去攻击肥猪们的堡垒。游戏是十分卡通的2D画面,看着愤怒的红色小鸟,奋不顾身的往绿色的肥猪的堡垒砸去,那种奇妙的感觉还真是令人感到很欢乐。而游戏的配乐同样充满了欢乐的感觉,轻松的节奏,欢快的风格。 源码下载

设置android返回键,保存和取得最高分

1.在.h中声明一些方法 virtual void keyBackClicked();           //Android返回键 bool isHaveSaveFile(); void getHighestHistoryScore(); 在.cpp中实现这个几个方法 void WelcomeLayer::keyBackClicked(