YOLOv9摄像头或视频实时检测

2024-06-24 07:04

本文主要是介绍YOLOv9摄像头或视频实时检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、下载yolov9的项目

地址:YOLOv9

2、使用下面代码进行检测

import torch
import cv2
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_boxes
from utils.plots import plot_one_box# 加载预训练的YOLOv9模型
model = attempt_load(r'./yolov9-t-converted.pt', device='cpu')  # 使用CPU进行推理,如果有GPU可以切换到'cuda'# 获取摄像头内容,参数 0 表示使用默认的摄像头
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)# 打开视频文件
# cap = cv2.VideoCapture('video.mp4')# 获取视频的宽度和高度
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 定义视频写入对象
out = cv2.VideoWriter('output.avi', cv2.VideoWriter_fourcc(*'XVID'), 30, (frame_width, frame_height))while cap.isOpened():ret, frame = cap.read()if not ret:break# 转换为RGB格式并进行检测img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)img_tensor = torch.from_numpy(img).to('cpu').permute(2, 0, 1).float() / 255.0  # 转换为Tensor并归一化img_tensor = img_tensor.unsqueeze(0)# 推理results = model(img_tensor)[0]# 后处理:非极大值抑制results = non_max_suppression(results, 0.4, 0.5)# 绘制检测框for det in results:if det is not None and len(det):det[:, :4] = scale_boxes(img_tensor.shape[2:], det[:, :4], frame.shape).round()for *xyxy, conf, cls in det:label = f'{model.names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, frame, label=label, color=(255, 0, 0), line_thickness=2)# 写入视频文件out.write(frame)# 显示结果cv2.imshow('frame', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
out.release()
cv2.destroyAllWindows()

3、在from utils.plots中添加plot_one_box

源码没有这个函数,直接在plots里面添加一个新的plot_one_box方法。否则会报错

def plot_one_box(x, img, color=None, label=None, line_thickness=None):# Plots one bounding box on image imgtl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thicknesscolor = color or [random.randint(0, 255) for _ in range(3)]c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)if label:tf = max(tl - 1, 1)  # font thicknesst_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filledcv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)

这篇关于YOLOv9摄像头或视频实时检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089478

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

《x86汇编语言:从实模式到保护模式》视频来了

《x86汇编语言:从实模式到保护模式》视频来了 很多朋友留言,说我的专栏《x86汇编语言:从实模式到保护模式》写得很详细,还有的朋友希望我能写得更细,最好是覆盖全书的所有章节。 毕竟我不是作者,只有作者的解读才是最权威的。 当初我学习这本书的时候,只能靠自己摸索,网上搜不到什么好资源。 如果你正在学这本书或者汇编语言,那你有福气了。 本书作者李忠老师,以此书为蓝本,录制了全套视频。 试

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

基于树梅派的视频监控机器人Verybot

最近这段时间做了一个基于树梅派 ( raspberry pi ) 的视频监控机器人平台 Verybot ,现在打算把这个机器人的一些图片、视频、设计思路进行公开,并且希望跟大家一起研究相关的各种问题,下面是两张机器人的照片:         图片1:                   图片2                    这个平台的基本组成是: