【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】

本文主要是介绍【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】


目录

  • python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】
  • 一、设计要求
      • 功能点1:数据读取与展示
      • 功能点2:数据筛选与保存
      • 功能点3:数据可视化
  • 二、设计思路
      • 1. 数据读取
        • 使用 `csv` 模块读取数据
        • 使用 `pandas` 库读取数据
      • 2. 数据清洗
        • 删除缺失值
      • 3. 数据处理
        • 筛选特定数据并保存
      • 总结
  • 三、可视化分析
    • 不同国家的葡萄酒数量分布
    • 葡萄酒评分随价格的分布情况
    • 不同评分等级的葡萄酒占比
    • 价格和评分关系
    • 国家葡萄酒数量进行分析
    • 八个省份的葡萄酒数量


一、设计要求

该项目通过读取葡萄酒数据文件,进行数据分析和可视化,展示不同国家、评分和价格的葡萄酒分布情况。主要功能包括数据读取与展示、数据筛选与保存、以及数据可视化。

功能点1:数据读取与展示

  • 读取CSV文件
    • 使用csv模块读取winemag-data.csv文件。
    • 使用pandas模块读取winemag-data.csv文件。
  • 显示特定行数据
    • 使用csv模块显示前15行、第20行到第25行、倒序输出最后10行的数据。
    • 使用pandas模块显示前15行、第20行到第25行、倒序输出最后10行的数据。
  • 数据描述
    • 使用pandas模块显示数据文件的信息(info方法)和描述性统计(describe方法)。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

功能点2:数据筛选与保存

  • 筛选US原产地葡萄酒数据
    • 从数据中筛选出原产地为US的葡萄酒,并选择显示其描述、评分和价格字段。
  • 保存筛选结果
    • 将筛选出的US葡萄酒数据保存到新的CSV文件us_wines.csv中。

功能点3:数据可视化

  • 柱状图:不同国家的葡萄酒数量
    • 创建柱状图显示不同国家的葡萄酒数量,设置标题为“不同国家的葡萄酒数量”。
  • 箱线图:葡萄酒评分随价格的分布
    • 创建箱线图显示葡萄酒评分随价格的分布,设置标题为“葡萄酒评分随价格的分布”。
  • 饼状图:不同评分类别的葡萄酒占比
    • 创建饼状图显示不同评分(低评分:80-84,中评分:85-89,高评分:90-100)类别的葡萄酒占比,设置标题为“不同评分类别的葡萄酒占比”。
  • 散点图:价格与评分关系
    • 创建散点图显示葡萄酒价格与评分的关系,设置标题为“价格与评分关系”。
  • 环状图:五个国家的葡萄酒数量
    • 创建环状图显示五个国家的葡萄酒数量,设置标题为“五个国家的葡萄酒数量”。
  • 玫瑰图:八个省份的葡萄酒数量
    • 创建玫瑰图显示八个省份的葡萄酒数量,设置标题为“八个省份的葡萄酒数量”。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

在这里插入图片描述

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈


二、设计思路

好的,结合上述代码,我们可以从数据读取、数据清洗和数据处理三个方面详细讲解代码的设计思路和实现过程。

1. 数据读取

数据读取是数据分析的第一步,代码中通过两种方式读取 CSV 文件的数据:使用 csv 模块和 pandas 库。

使用 csv 模块读取数据
import csvfilename = 'winemag-data.csv'
with open(filename, newline='', encoding='utf-8') as csvfile:reader = csv.reader(csvfile)data = list(reader)# 显示前15行数据
print("前15行数据:")
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈# 显示第20行到第25行的数据
print("\n第20行到第25行的数据:")
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈# 倒序输出最后10行的数据
print("\n倒序输出最后10行的数据:")
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈
  • 读取文件:使用 open 函数打开 CSV 文件,并使用 csv.reader 读取文件内容。
  • 转换为列表:将读取到的数据转换为列表,方便后续操作。
  • 显示特定行:通过列表切片操作显示特定行的数据,包括前15行、第20行到第25行,以及倒序的最后10行。
使用 pandas 库读取数据
import pandas as pd# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈# 显示前15行数据
print("\n前15行数据:")
print(df.head(15))# 显示第20行到第25行的数据
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈# 倒序输出最后10行的数据
print("\n倒序输出最后10行的数据:")
print(df.tail(10)[::-1])
  • 读取文件:使用 pandas.read_csv 读取 CSV 文件,返回一个 DataFrame 对象。
  • 显示数据信息和描述性统计:使用 df.info()df.describe() 分别显示数据的基本信息和描述性统计。
  • 显示特定行:通过 df.head()df.iloc[]df.tail()[::-1] 显示前15行、第20行到第25行以及倒序的最后10行数据。

2. 数据清洗

数据清洗是数据处理的重要一步,目的是确保数据的完整性和质量,去除或修正缺失、错误或不一致的数据。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

删除缺失值
df = df.dropna(subset=['points', 'price'])
  • 删除缺失值:使用 pandas 提供的 dropna 方法,删除 pointsprice 列中包含缺失值的行,确保数据的完整性。

3. 数据处理

数据处理包括对数据的筛选、转换和保存等操作,以便后续的分析和可视化。

筛选特定数据并保存
# 略 > 👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈
us_wines.to_csv('us_wines.csv', index=False)print("\n筛选出的US葡萄酒数据已保存到us_wines.csv文件中")
  • 筛选数据:使用布尔索引筛选出原产地为 US 的葡萄酒,并选择 descriptionpointsprice 列。
  • 保存数据:将筛选后的数据保存到新的 CSV 文件 us_wines.csv 中,便于后续使用。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

总结

整个代码从数据读取、数据清洗到数据处理,循序渐进地对葡萄酒数据进行全面的操作:

  1. 数据读取:通过 csv 模块和 pandas 库读取数据,了解数据的基本结构和内容。
  2. 数据清洗:删除 pointsprice 列中包含缺失值的行,确保数据完整性。
  3. 数据处理:筛选出特定条件下的数据并保存,为后续分析和可视化做好准备。

通过这些步骤,能够有效地对葡萄酒数据进行清洗和处理,确保数据质量并为进一步的分析奠定基础。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈


三、可视化分析

使用了 Pyecharts 库对葡萄酒数据进行了多种类型的可视化展示,以便从多个角度全面了解数据的特征和趋势。Pyecharts 是一个基于 Python 的数据可视化库,能够生成丰富多样的图表,包括柱状图、箱线图、饼状图、散点图、环状图和玫瑰图。

不同国家的葡萄酒数量分布

柱状图用于展示不同国家的葡萄酒数量分布。通过统计每个国家的葡萄酒数量,并在图表中以柱状形式展示,可以直观了解各个国家在葡萄酒生产中的份额。这种展示方式清晰明了,有助于快速识别出主要的葡萄酒生产国,为市场份额分析提供基础数据。

bar = (Bar().add_xaxis(df['country'].value_counts().index.tolist()).add_yaxis("数量", df['country'].value_counts().tolist()).set_global_opts(title_opts=opts.TitleOpts(title="不同国家的葡萄酒数量"))
)

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

葡萄酒评分随价格的分布情况

箱线图用于展示葡萄酒评分随价格的分布情况。通过箱线图,可以观察到数据的分布情况、中位数、四分位数以及异常值。这种图表有助于揭示价格与评分之间的潜在关系,帮助消费者和生产者理解价格对评分的影响,从而优化定价策略和质量管理。

boxplot = Boxplot()
boxplot.add_xaxis(["价格"])
boxplot.add_yaxis("评分", boxplot.prepare_data([df['points'].tolist()]))
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="葡萄酒评分随价格的分布"))

在这里插入图片描述

不同评分等级的葡萄酒占比

饼状图将评分分为三类:低评分(80-84)、中评分(85-89)和高评分(90-100),并展示各类评分的葡萄酒占比。通过这种分类展示,用户可以清晰了解不同评分等级的葡萄酒在数据集中所占的比例,有助于了解市场对不同评分葡萄酒的需求和接受度。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

bins = [80, 84, 89, 100]
labels = ['低评分 (80-84)', '中评分 (85-89)', '高评分 (90-100)']
df['rating_category'] = pd.cut(df['points'], bins=bins, labels=labels, right=False)
rating_counts = df['rating_category'].value_counts()
pie = (Pie()# 略.....# 略......set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}", position="outside"))
)

在这里插入图片描述

价格和评分关系

散点图展示了价格与评分的关系。通过在散点图中展示价格和评分的具体数据点,可以观察到价格与评分之间的分布趋势和聚集情况。这种图表有助于进一步验证价格是否在一定程度上反映了葡萄酒的评分,为消费者选购葡萄酒提供参考。

scatter = (Scatter()# 略.....# 略......set_global_opts(title_opts=opts.TitleOpts(title="价格与评分关系"))
)![

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

在这里插入图片描述

国家葡萄酒数量进行分析

环状图选择了前五个国家的葡萄酒数量进行分析。通过对主要葡萄酒生产国的数据进行环状图展示,用户可以直观了解这些国家的市场份额和竞争情况,为国际市场战略制定提供数据支持。

top_countries = df['country'].value_counts().nlargest(5)
ring = (Pie()# 略.....# 略......set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}", position="outside"))
)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

在这里插入图片描述

八个省份的葡萄酒数量

玫瑰图分析了前八个省份的葡萄酒数量。通过选取葡萄酒数量最多的八个省份,并在玫瑰图中进行展示,用户可以直观了解这些省份在葡萄酒生产中的重要地位。这种分析有助于揭示主要葡萄酒生产区域的分布情况,为区域市场分析和策略制定提供参考。

top_provinces = df['province'].value_counts().nlargest(8)
rose = (Pie().add("", [list(z) for z in zip(top_provinces.index.tolist(), top_provinces.tolist())], radius=["30%", "75%"], rosetype="radius")# 略.....# 略.....
)

在这里插入图片描述


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 葡萄酒 ” 获取。👈👈👈

这篇关于【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089273

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图