2025秋招NLP算法面试真题(二)-史上最全Transformer面试题:灵魂20问帮你彻底搞定Transformer

本文主要是介绍2025秋招NLP算法面试真题(二)-史上最全Transformer面试题:灵魂20问帮你彻底搞定Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简单介绍

之前的20个问题的文章在这里:

https://zhuanlan.zhihu.com/p/148656446

其实这20个问题不是让大家背答案,而是为了帮助大家梳理 transformer的相关知识点,所以你注意看会发现我的问题也是有某种顺序的。

本文涉及到的代码可以在这里找到:

https://github.com/DA-southampton/NLP_ability

问题基本上都可以在网上找到答案,所以大家可以先去搜一搜,自己理解一下,我也不会重新把答案回答一遍,而是列出来我看到的比较好的回答,然后加上点自己的注解帮助大家理解,在这里感谢那些大佬回答者,今天整理了其中的五个,剩下的我抽空在整理一下。

这里我先小声说一下,写这些笔记有两个目的。

一个是方便大家,好多题目都太散了,没有人归纳一下。

二个就是方便自己重新复习一遍,所以我也不可能是直接把答案一粘就完事,这对我自己就没啥帮助了。所以没啥别的目的,不是为了博关注粉丝之类的,因为这些如果做不到大V基本没啥用,我也没那时间去经营成为大V,工作忙的要死,就是想要有个一起沟通的渠道而已。

公众号/知乎/github基本同步更新,大家关注哪一个都可以,不过可能微信链接跳转不方便,知乎编辑不方便,github对有些同学不太方便打开。大家看自己情况关注吧。

正文

1.Transformer为何使用多头注意力机制?(为什么不使用一个头)

答案解析参考这里:为什么Transformer 需要进行 Multi-head Attention?
https://www.zhihu.com/question/341222779

注解:简单回答就是,多头保证了transformer可以注意到不同子空间的信息,捕捉到更加丰富的特征信息。其实本质上是论文原作者发现这样效果确实好,我把作者的实验图发在下面:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘?

答案解析参考这里:transformer中为什么使用不同的K 和 Q, 为什么不能使用同一个值? - 知乎
https://www.zhihu.com/question/319339652

注解:简单回答就是,使用Q/K/V不相同可以保证在不同空间进行投影,增强了表达能力,提高了泛化能力。

3.Transformer计算attention的时候为何选择点乘而不是加法?两者计算复杂度和效果上有什么区别?

答案解析:为了计算更快。矩阵加法在加法这一块的计算量确实简单,但是作为一个整体计算attention的时候相当于一个隐层,整体计算量和点积相似。在效果上来说,从实验分析,两者的效果和dk相关,dk越大,加法的效果越显著。更具体的结果,大家可以看一下实验图(从莲子同学那里看到的,专门去看了一下论文):

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.为什么在进行softmax之前需要对attention进行scaled(为什么除以dk的平方根),并使用公式推导进行讲解

答案解析参考这里:transformer中的attention为什么scaled? - LinT的回答 - 知乎
https://www.zhihu.com/question/339723385/answer/782509914

注解:针对大佬回答的第二个问题,也就是方差的问题,我简单的写了一个代码验证了一下,不愿意看公式推导的同学直接看代码结果就可以。代码如下:

import numpy as np 
arr1=np.random.normal(size=(3,1000))
arr2=np.random.normal(size=(3,1000))
result=np.dot(arr1.T,arr2)
arr_var=np.var(result)
print(arr_var) #result: 2.9 (基本上就是3,和就是我们设定的维度)
5.在计算attention score的时候如何对padding做mask操作?

答案解析:padding位置置为负无穷(一般来说-1000就可以)。对于这一点,涉及到batch_size之类的,具体的大家可以看一下抱抱脸实现的源代码,位置在这里:

https://github.com/huggingface/transformers/blob/aa6a29bc25b663e1311c5c4fb96b004cf8a6d2b6/src/transformers/modeling_bert.py#L720

这个是最新版,比较老版本的实现地址我也罗列一下,应该没啥区别,我没细看,一直用的老版本的:

https://github.com/DA-southampton/Read_Bert_Code/blob/0605619582f1bcd27144e2d76fac93cb16e44055/bert_read_step_to_step/transformers/modeling_bert.py#L607

参考链接:
关于Transformer,面试官们都怎么问?
写的很好,面试题总结的很好,把整体梳理了一遍。

关于Transformer的若干问题整理记录 - Adherer的文章 - 知乎
https://zhuanlan.zhihu.com/p/82391768

关于Transformer的若干问题整理记录 - Adherer的文章 - 知乎
https://zhuanlan.zhihu.com/p/82391768 和上面是一个文章,在知乎

Transformer的细节与技巧 - 沧海一栗的文章 - 知乎
https://zhuanlan.zhihu.com/p/69697467
讲了几个代码上的小细节

NLP预训练模型:从transformer到albert - Serendipity的文章 - 知乎
https://zhuanlan.zhihu.com/p/85221503
大佬主要是大白话讲了一下代码的实现,包括维度的变化

这篇关于2025秋招NLP算法面试真题(二)-史上最全Transformer面试题:灵魂20问帮你彻底搞定Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089061

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python中DataFrame转列表的最全指南

《Python中DataFrame转列表的最全指南》在Python数据分析中,Pandas的DataFrame是最常用的数据结构之一,本文将为你详解5种主流DataFrame转换为列表的方法,大家可以... 目录引言一、基础转换方法解析1. tolist()直接转换法2. values.tolist()矩阵