C# Onnx Yolov5 水果识别,人员识别,物品识别 人工智能

2024-06-24 03:04

本文主要是介绍C# Onnx Yolov5 水果识别,人员识别,物品识别 人工智能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

先上效果

来电废话,但实用

网络成功案例实践易失败的原因

万物检测涉及技术

 下载合集

关键代码

全部代码

实操vs2022安装关键

YOLO V5核心库编译

编写自己识别软件

更新相关依赖

标注字库文件

测试效果

名词解释YOLO

名词解释ONNX

源码

直播教学和作者


先上效果

来电废话,但实用

为何照做网络成功案例仍失败?软件与男女关系的启示 

在网络上看到的成功案例,往往只是呈现了表面的步骤和结果,而忽略了背后诸多复杂的细节和潜在的问题。
就像您提到的软件相关的情况,看似简单的操作,实际上涉及众多组件,版本的不匹配就如同齿轮无法精准咬合,导致整个系统无法顺畅运转。无法下载所需组件更是直接阻断了操作的进行,而系统对某些版本的不兼容,以及某些版本资源的稀缺,都使得我们难以完全复刻所谓的成功。
再以男女关系为例,两个优秀的个体并不意味着就能组成完美的组合。就如同不同规格的零件,尽管各自品质上乘,但如果规格不匹配,强行组合在一起,不仅无法发挥优势,还可能产生冲突和矛盾

网络成功案例实践易失败的原因

A.软件组件复杂
   看似简单,实则涉及众多组件。各个版本不匹配,影响正常使用。
B.组件下载受限
     部分组件无法下载。
C系统与版本不兼容
  某些系统无法安装特定版本。部分版本已无法获取。

万物检测涉及技术

序号软件和技术版本说明
1visual studio2022 社区版安装单个必须勾选net5.0
2Microsoft.ML.Onnx.1.16.2

Microsoft.ML.OnnxRuntime.dll

onnxruntime.dll

3OpenCvSharp4.8安装方式nuget,或者库文件
4

SixLabors.Fonts

SixLabors.ImageSharp.Drawing

SixLabors.ImageSharp

1.1

1.0

2.18

5net 架构net5.0net4.7,net4.5,net 4.8 都不行
6yolov5n6.onnx模型文件源码自带
7yolov5
8 labelimg1.8labelimg是一款开源的图像标注工具,标签可用于分类和目标检测,它是用python写的

 下载合集

1.yovo v5

人工智能神经/yolov5-net

2. visual studio 2022下载

Visual Studio 2022 IDE - 适用于软件开发人员的编程工具

3. onnx C#

https://github.com/microsoft/onnxruntime/releases

5. labelimg 下载

未来之窗新零售app应用市场

进入搜索下载

关键代码

  private void button2_Click(object sender, EventArgs e){文识别到数量 = 0;listBox1.Items.Clear();string 原始路径 = 文件列表[文件序号];string 目标路径 = Application.StartupPath + "/result未来之窗/" + System.IO.Path.GetFileName(原始路径) + "_airet" + System.IO.Path.GetExtension(原始路径); ;//  var image =   SixLabors.ImageSharp.Image.LoadAsync<Rgba32>(原始路径);//SixLabors.ImageSharp.ImageSixLabors.ImageSharp.Image<Rgba32> 未来之窗img = SixLabors.ImageSharp.Image.Load<Rgba32>(原始路径);var scorer = new YoloScorer<YoloCocoP5Model>("Assets/Weights/yolov5n.onnx");//   var predictions = scorer.Predict(image);var predictions = scorer.Predict(未来之窗img);var font = new SixLabors.Fonts.Font(new SixLabors.Fonts.FontCollection().Add("C:/Windows/Fonts/consola.ttf"), 16);foreach (var prediction in predictions) // draw predictions{var score = Math.Round(prediction.Score, 2);var (x, y) = (prediction.Rectangle.Left - 3, prediction.Rectangle.Top - 23);// image.Mutate(a => a.DrawPolygon(new SixLabors.ImageSharp.Drawing.Processing.Pen(prediction.Label.Color, 1),//  未来之窗img.Mutate(a => a.DrawPolygon(new SixLabors.ImageSharp.Drawing.Processing.Pen(prediction.Label.Color, 1),//           new SixLabors.ImageSharp.PointF(prediction.Rectangle.Left, prediction.Rectangle.Top),//       new SixLabors.ImageSharp.PointF(prediction.Rectangle.Right, prediction.Rectangle.Top),//     new SixLabors.ImageSharp.PointF(prediction.Rectangle.Right, prediction.Rectangle.Bottom),//     new SixLabors.ImageSharp.PointF(prediction.Rectangle.Left, prediction.Rectangle.Bottom)//  ));//  未来之窗img.Mutate(a => a.DrawText($"{prediction.Label.Name} ({score})",//     font, prediction.Label.Color, new SixLabors.ImageSharp.PointF(x, y)));PointF[] 未来之窗point = new PointF[4];未来之窗point[0] = new PointF(prediction.Rectangle.Left, prediction.Rectangle.Top);未来之窗point[1] = new PointF(prediction.Rectangle.Right, prediction.Rectangle.Top);未来之窗point[2] = new PointF(prediction.Rectangle.Right, prediction.Rectangle.Bottom);未来之窗point[3] = new PointF(prediction.Rectangle.Left, prediction.Rectangle.Bottom);未来之窗img.Mutate(a => a.DrawPolygon(new Pen(prediction.Label.Color, 2), 未来之窗point));未来之窗img.Mutate(a => a.DrawText($"{prediction.Label.Name} ({score})",font, prediction.Label.Color, new SixLabors.ImageSharp.PointF(x, y)));文识别到数量 = 文识别到数量 + 1;listBox1.Items.Add(文识别到数量+":" + prediction.Label.Name);lab_识别结果.Text = 文识别到数量 + "个";}// await image.SaveAsync("Assets/result.jpg");//image.SaveAsync(目标路径);未来之窗img.SaveAsync(目标路径);pictureBox2.Image = System.Drawing.Image.FromFile(目标路径);}

全部代码

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
//using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;using System.IO;using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Processing;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Drawing;using SixLabors.Fonts;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Drawing.Processing;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;using Yolov5Net.Scorer;
using Yolov5Net.Scorer.Models;namespace WinFormsApp1trytrty
{public partial class Form1 : Form{private string[] 文件列表;private int 文件序号 = 0;private int 文识别到数量 = 0;public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){//文件列表if (folderBrowserDialog1.ShowDialog() == DialogResult.OK){txt_文件夹路径.Text = folderBrowserDialog1.SelectedPath;列举文件(folderBrowserDialog1.SelectedPath);未来之窗_人工智能_显示图片();}}private void 未来之窗_人工智能_显示图片(){if (文件序号 < 文件列表.Length && 文件序号 >= 0){pictureBox1.Image = System.Drawing.Image.FromFile(文件列表[文件序号]);}}private void 列举文件(String 路径){string fileFormat = "*.jpg";// 获取指定格式的文件列表// 列举文件string[] files = Directory.GetFiles(路径, fileFormat);文件列表 = files;// 输出文件名称foreach (string file in files){// Console.WriteLine(file);// 获取扩展名string extension = System.IO.Path.GetExtension(file);// MessageBox.Show(""+ extension);if (extension.Equals(".jpg")){//文件列表.}}}private void button3_Click(object sender, EventArgs e){文件序号 = 0;列举文件(txt_文件夹路径.Text);未来之窗_人工智能_显示图片();}private void btn_上一个_Click(object sender, EventArgs e){if (文件序号 < 文件列表.Length && 文件序号 > 0){文件序号 = 文件序号 - 1;未来之窗_人工智能_显示图片();}}private void btn_下一个_Click(object sender, EventArgs e){if (文件序号 < 文件列表.Length - 1){文件序号 = 文件序号 + 1;未来之窗_人工智能_显示图片();}}private void button2_Click(object sender, EventArgs e){文识别到数量 = 0;listBox1.Items.Clear();string 原始路径 = 文件列表[文件序号];string 目标路径 = Application.StartupPath + "/result未来之窗/" + System.IO.Path.GetFileName(原始路径) + "_airet" + System.IO.Path.GetExtension(原始路径); ;//  var image =   SixLabors.ImageSharp.Image.LoadAsync<Rgba32>(原始路径);//SixLabors.ImageSharp.ImageSixLabors.ImageSharp.Image<Rgba32> 未来之窗img = SixLabors.ImageSharp.Image.Load<Rgba32>(原始路径);var scorer = new YoloScorer<YoloCocoP5Model>("Assets/Weights/yolov5n.onnx");//   var predictions = scorer.Predict(image);var predictions = scorer.Predict(未来之窗img);var font = new SixLabors.Fonts.Font(new SixLabors.Fonts.FontCollection().Add("C:/Windows/Fonts/consola.ttf"), 16);foreach (var prediction in predictions) // draw predictions{var score = Math.Round(prediction.Score, 2);var (x, y) = (prediction.Rectangle.Left - 3, prediction.Rectangle.Top - 23);// image.Mutate(a => a.DrawPolygon(new SixLabors.ImageSharp.Drawing.Processing.Pen(prediction.Label.Color, 1),//  未来之窗img.Mutate(a => a.DrawPolygon(new SixLabors.ImageSharp.Drawing.Processing.Pen(prediction.Label.Color, 1),//           new SixLabors.ImageSharp.PointF(prediction.Rectangle.Left, prediction.Rectangle.Top),//       new SixLabors.ImageSharp.PointF(prediction.Rectangle.Right, prediction.Rectangle.Top),//     new SixLabors.ImageSharp.PointF(prediction.Rectangle.Right, prediction.Rectangle.Bottom),//     new SixLabors.ImageSharp.PointF(prediction.Rectangle.Left, prediction.Rectangle.Bottom)//  ));//  未来之窗img.Mutate(a => a.DrawText($"{prediction.Label.Name} ({score})",//     font, prediction.Label.Color, new SixLabors.ImageSharp.PointF(x, y)));PointF[] 未来之窗point = new PointF[4];未来之窗point[0] = new PointF(prediction.Rectangle.Left, prediction.Rectangle.Top);未来之窗point[1] = new PointF(prediction.Rectangle.Right, prediction.Rectangle.Top);未来之窗point[2] = new PointF(prediction.Rectangle.Right, prediction.Rectangle.Bottom);未来之窗point[3] = new PointF(prediction.Rectangle.Left, prediction.Rectangle.Bottom);未来之窗img.Mutate(a => a.DrawPolygon(new Pen(prediction.Label.Color, 2), 未来之窗point));未来之窗img.Mutate(a => a.DrawText($"{prediction.Label.Name} ({score})",font, prediction.Label.Color, new SixLabors.ImageSharp.PointF(x, y)));文识别到数量 = 文识别到数量 + 1;listBox1.Items.Add(文识别到数量+":" + prediction.Label.Name);lab_识别结果.Text = 文识别到数量 + "个";}// await image.SaveAsync("Assets/result.jpg");//image.SaveAsync(目标路径);未来之窗img.SaveAsync(目标路径);pictureBox2.Image = System.Drawing.Image.FromFile(目标路径);}}
}

实操vs2022安装关键

YOLO V5核心库编译

从未来之窗下载后,直接打开工程文件,编译,会生成

编写自己识别软件

新建net5.0 软件

复制未来之窗代码到对应按钮

更新相关依赖

依赖:OpenCvSharp4.4.8

Microsoft.ML.OnnxRuntime.1.16.2

SixLabors.ImageSharp.2.1.8

SixLabors.ImageSharp.Drawing.1.0.0

SixLabors.Fonts.1.0.0

标注字库文件

consola.ttf 自己网上搜索

至此全部搞完

测试效果

水果识别

人员识别

名词解释YOLO

YOLO(You Only Look Once)是一种基于单个神经网络的目标检测系统,由 Joseph Redmon 和 Ali Farhadi 等人于 2015 年提出。YOLO 算法将目标检测任务转化为一个回归问题,直接在整个图像上使用一个卷积神经网络来预测边界框和类别概率。

YOLO 算法的主要步骤包括:

  1. 图像分割:将输入图片分割成 S×S 网格。
  2. 网格处理:每个单元格预测 B 个边界框以及边界框的置信度,同时预测 C 个类别概率值。
  3. 非极大值抑制:使用非极大值抑制算法去除冗余的边界框,得到最终的检测结果。

YOLO 算法具有速度快、能够捕捉目标的全局信息、减少背景误检等优点。但它也存在一些局限性,例如对于小目标或密集目标的检测效果可能较差。

YOLO 算法有多个版本,如 YOLOv1、YOLOv2、YOLOv3、YOLOv4 和 YOLOv5 等。每个版本都在性能、准确性和速度等方面进行了改进和优化。

在实际应用中,YOLO 算法被广泛用于自动驾驶、智能监控、人脸识别等领域。它为计算机视觉任务提供了一种高效、准确的解决方案。

名词解释ONNX

ONNX 的主要目的是实现不同深度学习框架之间的模型互操作性。这意味着,使用一种框架(如 TensorFlow、PyTorch 等)训练的模型,可以轻松转换为 ONNX 格式,并在支持 ONNX 的其他框架或工具中进行部署和推理。

以下是 ONNX 技术的一些关键特点和优势:

  1. 框架互操作性:方便模型在不同框架之间迁移,减少重复开发工作。
  2. 优化和加速:一些推理引擎和硬件平台针对 ONNX 格式进行了优化,能够提高模型的推理速度。
  3. 便于部署:简化了将模型部署到生产环境的过程,尤其是在需要跨多种硬件和软件环境的情况下。

源码

全部源码已经放本文章,如果需要下载直接使用

联系微信 cybersnow

淘宝链接

首页-未来之窗软件服务-淘宝网

开发接单

直播教学和作者

 

这篇关于C# Onnx Yolov5 水果识别,人员识别,物品识别 人工智能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088996

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

904.水果成篮

题目 链接:leetcode链接 思路分析(滑动窗口) 读完题目,很明显,这个题目需要我们寻找一个最长子数组,使得这个子数组里面最多存在两种不同的数字,很容易联想到使用滑动窗口。 另外,需要使用hash表来记录区间内的不同种水果的个数 首先还是left,right = 0; 进窗口:right进哈希表 判断:哈希表的size > 2,就需要出窗口 出窗口:hash[left]–的同时,

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

C# dateTimePicker 显示年月日,时分秒

dateTimePicker默认只显示日期,如果需要显示年月日,时分秒,只需要以下两步: 1.dateTimePicker1.Format = DateTimePickerFormat.Time 2.dateTimePicker1.CustomFormat = yyyy-MM-dd HH:mm:ss Tips:  a. dateTimePicker1.ShowUpDown = t

C#关闭指定时间段的Excel进程的方法

private DateTime beforeTime;            //Excel启动之前时间          private DateTime afterTime;               //Excel启动之后时间          //举例          beforeTime = DateTime.Now;          Excel.Applicat