数据挖掘与分析 个别选择题ID3Apriori算法

2024-06-23 23:12

本文主要是介绍数据挖掘与分析 个别选择题ID3Apriori算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选择题

1.当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(聚类)

2.关于K-means算法,正确的描述是:初始值不同,最终结果可能不同

3.K-means算法中的初始中心点:直接影响算法的收敛结果

4.处理缺失值的方法包括:不处理、删除记录、插补法

5.神经网络的缺点包括:需要大量的参数,如网络拓扑结构权值和阈值的初始值等;输出的结果难以解释

6.BP神经网络的缺点是:学习过程不收敛慢;得到的网络性能差;BP算法不完备,网络学习率稳定性差。

7.数据规约的目的是:得到数据集的压缩表示

8.请选出以下关于数据规约的两种形式--属性规约和数值规约说法中错误的是:箱型图常用来实现数据规约

ID3算法

想象一下,你是一位侦探,正在解决一个神秘案件,要找出谁偷吃了厨房里的饼干。你面前有一群小动物嫌疑人,比如小狗、小猫、小兔子等,它们都有自己的特征,比如体型大小、是否喜欢甜食、是不是经常进厨房等。

ID3算法就像是你用来一步步缩小嫌疑范围,最终找到“罪犯”的方法。我们用信息熵这个概念来衡量混乱程度,就像案件开始时,因为不知道是谁干的,信息很混乱。信息熵越高,意味着不确定性越大。

第一步:收集线索(特征选择) 首先,你需要看哪些线索最有用。比如,你发现体型大的动物进厨房比较困难,这是一个很有用的线索,因为它能大大减少嫌疑对象。在ID3算法中,这就相当于计算每个特征(比如动物体型)对减少不确定性(降低信息熵)的贡献有多大,这个贡献度叫做“信息增益”。信息增益最大的特征,就是你首先要检查的线索。

第二步:根据线索分组(划分数据集) 有了最重要的线索后,你就根据这个线索来分组嫌疑人。比如,把动物们按照体型大小分成两组,一组是大动物,另一组是小动物。这样,原本混在一起的信息就变得清晰一些了。

第三步:深入调查(递归构建) 对每一组,你继续用同样的方法找下一个最好的线索来进一步缩小范围,直到最后每组只剩下一个最可能的“嫌疑人”,或者线索用完了。

第四步:做出结论(生成决策) 当所有线索都用完,或者某组里的动物特征非常明显指向同一个答案时,你就做出了决定,找到了最有可能的“饼干小偷”。

Apriori算法

1. 确定支持度(Support)

首先,我们要设定一个支持度阈值,这个阈值决定了什么样的商品组合算是“频繁出现”的。比如,如果支持度阈值设为20%,就意味着只有那些在至少20%的购物篮中同时出现的商品组合才被认为是频繁项集。

2. 寻找频繁项集(Frequent Itemsets)

第一步:创建1项集候选项
  • 我们从所有单独商品(1项集)开始,统计每个商品在所有购物篮中出现的次数。
  • 只保留那些出现次数达到或超过支持度阈值的商品,这些就是我们的初次频繁项集。
第二步:生成候选项集
  • 基于已有的频繁项集,生成更大的候选项集。比如,如果{啤酒}和{薯片}都是频繁项集,我们就尝试将它们组合成{啤酒, 薯片}作为新的候选项。
  • 但是,Apriori算法有个聪明的剪枝策略,它只考虑那些子集已经是频繁项集的组合。也就是说,如果{啤酒}和{薯片}单独都是频繁的,那么才考虑{啤酒, 薯片}。这减少了大量不必要的计算。
第三步:计数并筛选
  • 继续统计这些新候选项集在所有购物篮中的出现次数。
  • 只有支持度足够的组合才会成为新的频繁项集。
第四步:重复直到不再有新项集
  • 这个过程会一直重复,每次增加一个商品到组合中,直到无法生成新的频繁项集为止。

3. 生成关联规则并计算置信度(Confidence)

  • 对于每一个频繁项集,我们尝试从中移除一到多个商品来生成规则。比如,对于{啤酒, 薯片},我们可以生成规则:“如果买了啤酒,那么也会买薯片”。
  • 置信度是规则强度的一种度量,计算公式是:置信度 = (支持度(啤酒, 薯片) / 支持度(啤酒))。它告诉我们,一旦啤酒被购买,购买薯片的概率是多少。
  • 通常,我们还会设定一个置信度阈值,只有超过这个阈值的规则才会被视为有价值的关联规则。

这篇关于数据挖掘与分析 个别选择题ID3Apriori算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088547

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个