02 TensorFlow 2.0:前向传播之张量实战

2024-06-23 21:48

本文主要是介绍02 TensorFlow 2.0:前向传播之张量实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你是前世未止的心跳
你是来生胸前的记号
未见分晓
怎么把你忘掉
                                                                                                                                《千年》

内容覆盖:

  • convert to tensor
  • reshape
  • slices
  • broadcast (mechanism)
import tensorflow as tf
print(tf.__version__)import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'import warnings
warnings.filterwarnings('ignore')from tensorflow import keras
from tensorflow.keras import datasets
2.0.0-alpha0

1. global constants setting

lr = 1e-3
epochs = 10

2. load data and tensor object 0-1

## load mnist data
# x: [6w, 28, 28]
# y: [6w]
(x,y),_ = datasets.mnist.load_data()
## x: 0-255. => 0-1.
x = tf.convert_to_tensor(x, dtype=tf.float32)/255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
print(x.shape, y.shape)
print(tf.reduce_max(x), tf.reduce_min(x))
print(tf.reduce_max(y), tf.reduce_min(y))
(60000, 28, 28) (60000,)
tf.Tensor(1.0, shape=(), dtype=float32) tf.Tensor(0.0, shape=(), dtype=float32)
tf.Tensor(9, shape=(), dtype=int32) tf.Tensor(0, shape=(), dtype=int32)

3. split batch

## split batches
# x: [128, 28, 28]
# y: [128, 28, 28]
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
train_iter_ = iter(train_db)
sample_ = next(train_iter_)
print('first batch & next batch:', sample_[0].shape, len(sample), sample_[1])
first batch & next batch: (96, 784) 2 tf.Tensor( [3 4 5 6 7 8 9 0 1 2 3 4 8 9 0 1 2 3 4 5 6 7 8 9 6 0 3 4 1 4 0 7 8 7 7 9 0 4 9 4 0 5 8 5 9 8 8 4 0 7 1 3 5 3 1 6 5 3 8 7 3 1 6 8 5 9 2 2 0 9 2 4 6 7 3 1 3 6 6 2 1 2 6 0 7 8 9 2 9 5 1 8 3 5 6 8], shape=(96,), dtype=int32)

4. parameters init

## parameters init. in order to adapt below GradientTape(),parameters must to be tf.Variable
w1 = tf.Variable(tf.random.truncated_normal([28*28, 256], stddev=0.1)) # truncated normal init
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))

5. compute(update) loss&gradient for each epoch&batch

## for each epoch
for epoch in range(epochs):## for each batchfor step, (x, y) in enumerate(train_db): # x: [b, 28, 28] => [b, 28*28]x = tf.reshape(x, [-1, 28*28])## compute forward output for each batchwith tf.GradientTape() as tape: # GradientTape below parameters must be tf.Variable# print(x.shape, w1.shape, b1.shape)h1 = x@w1 + b1 # implicitly,b1 ([256]) broadcast_to [b,256]h1 = tf.nn.relu(h1)h2 = h1@w2 + b2 # like aboveh2 = tf.nn.relu(h2)h3 = h2@w3 + b3 # like aboveout = tf.nn.relu(h3)## copute lossy_onehot = tf.one_hot(y, depth=10)loss = tf.reduce_mean(tf.square(y_onehot - out)) # loss is scalar## compute gradientsgrads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])# update parametersw1.assign_sub(lr*grads[0])b1.assign_sub(lr*grads[1])w2.assign_sub(lr*grads[2])b2.assign_sub(lr*grads[3])w3.assign_sub(lr*grads[4])b3.assign_sub(lr*grads[5])if step%100==0:print('epoch/step:', epoch, step,'loss:', float(loss))
epoch/step: 0 0 loss: 0.18603835999965668
epoch/step: 0 100 loss: 0.13570542633533478
epoch/step: 0 200 loss: 0.11861399561166763
epoch/step: 0 300 loss: 0.11322200298309326
epoch/step: 0 400 loss: 0.10488209873437881
epoch/step: 1 0 loss: 0.10238083451986313
epoch/step: 1 100 loss: 0.10504438728094101
epoch/step: 1 200 loss: 0.10291490703821182
epoch/step: 1 300 loss: 0.10242557525634766
epoch/step: 1 400 loss: 0.09785071760416031
epoch/step: 2 0 loss: 0.09843370318412781
epoch/step: 2 100 loss: 0.10121582448482513
epoch/step: 2 200 loss: 0.0993235856294632
epoch/step: 2 300 loss: 0.09929462522268295
epoch/step: 2 400 loss: 0.09492874145507812
epoch/step: 3 0 loss: 0.09640722721815109
epoch/step: 3 100 loss: 0.09940245747566223
epoch/step: 3 200 loss: 0.0968528538942337
epoch/step: 3 300 loss: 0.09739632904529572
epoch/step: 3 400 loss: 0.09268360584974289
epoch/step: 4 0 loss: 0.09469369798898697
epoch/step: 4 100 loss: 0.09802170842885971
epoch/step: 4 200 loss: 0.09442965686321259
epoch/step: 4 300 loss: 0.09557832777500153
epoch/step: 4 400 loss: 0.09028112888336182
epoch/step: 5 0 loss: 0.09288302809000015
epoch/step: 5 100 loss: 0.09671110659837723
epoch/step: 5 200 loss: 0.09200755506753922
epoch/step: 5 300 loss: 0.09379477798938751
epoch/step: 5 400 loss: 0.0879468247294426
epoch/step: 6 0 loss: 0.09075240045785904
epoch/step: 6 100 loss: 0.09545578807592392
epoch/step: 6 200 loss: 0.08961271494626999
epoch/step: 6 300 loss: 0.09208488464355469
epoch/step: 6 400 loss: 0.08578769862651825
epoch/step: 7 0 loss: 0.08858789503574371
epoch/step: 7 100 loss: 0.09415780007839203
epoch/step: 7 200 loss: 0.08701150119304657
epoch/step: 7 300 loss: 0.09043200314044952
epoch/step: 7 400 loss: 0.08375751972198486
epoch/step: 8 0 loss: 0.08612515032291412
epoch/step: 8 100 loss: 0.09273834526538849
epoch/step: 8 200 loss: 0.08432737737894058
epoch/step: 8 300 loss: 0.08866600692272186
epoch/step: 8 400 loss: 0.08179832994937897
epoch/step: 9 0 loss: 0.08383172750473022
epoch/step: 9 100 loss: 0.09108485281467438
epoch/step: 9 200 loss: 0.08158060908317566
epoch/step: 9 300 loss: 0.08686531335115433
epoch/step: 9 400 loss: 0.0796399861574173

6. notice

  • 训练出来loss为nan或者不变等情况
    可能出现梯度爆炸等情况,这里可能需要 change parameter init等,比如这里利用 m u = 0 , s t d = 0.1 mu=0, std=0.1 mu=0,std=0.1截尾normal初始化权重 w w w
    参见一些解释:为什么用tensorflow训练网络,出现了loss=nan,accuracy总是一个固定值?

这篇关于02 TensorFlow 2.0:前向传播之张量实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088366

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3