代码随想录算法训练营第四十六天 | 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

本文主要是介绍代码随想录算法训练营第四十六天 | 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

121. 买卖股票的最佳时机

题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/
文档讲解:https://programmercarl.com/0121.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4…
视频讲解:https://www.bilibili.com/video/BV1Xe4y1u77q

思路

  • 确定dp数组以及下标的含义:dp[i][0]表示第i天持有股票的最大金额,dp[i][1]表示第i天不持有股票的最大金额。
  • 确定递推公式:dp[i][0]有两种情况组成,一种是前一天就持有股票,一种是当天才买入股票,取最大的:dp[i][0] = Math.max(dp[i - 1][0], -prices[i])dp[i][1]有两种情况组成,一种是前一天不持有股票,一种是当天卖掉股票,取最大的:dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i])
  • dp数组如何初始化:dp[0][0] = - prices[0];dp[0][1] = 0;
  • 确定遍历顺序:
  • 打印dp数组,用于debug

代码

class Solution {public int maxProfit(int[] prices) {int dp[][] = new int[prices.length][2];dp[0][0] = - prices[0];dp[0][1] = 0;for (int i = 1; i < prices.length; i++){dp[i][0] = Math.max(dp[i - 1][0], - prices[i]);dp[i][1] = Math.max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[len - 1][1];}
}

分析:时间复杂度:O(n),空间复杂度:O(n)。

122.买卖股票的最佳时机II

题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/
文档讲解:https://programmercarl.com/0122.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4…
视频讲解:https://www.bilibili.com/video/BV1D24y1Q7Ls

思路

代码中和买卖股票1的区别在于dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);,因为本题是可以多次买卖股票,所以在当天买股票的时候可能之前已经买卖过,已经是有收益的了。

代码

class Solution {public int maxProfit(int[] prices) {int[][] dp = new int[prices.length][2];dp[0][0] -= prices[0]; // dp[i][0]表示持有当天股票dp[0][1] = 0; // dp[i][1]表示不持有当天股票for (int i = 1; i < prices.length; i++) {dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return Math.max(dp[prices.length - 1][1], dp[prices.length - 1][0]);}
}

分析:时间复杂度:O(n),空间复杂度:O(n)。

123.买卖股票的最佳时机III

题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/
文档讲解:https://programmercarl.com/0123.%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E7%9A%84%E6%9C%80%E4…
视频讲解:https://www.bilibili.com/video/BV1WG411K7AR

思路

  • 确定dp数组以及下标的含义:第i天一共有五个状态
    • dp[i][0]:没有操作 (也可以不设置这个状态,没有操作金额就是0)
    • dp[i][1]:第一次持有股票
    • dp[i][2]:第一次不持有股票
    • dp[i][3]:第二次持有股票
    • dp[i][4]:第二次不持有股票
  • 确定递推公式:
    • 达到dp[i][1]状态,有两个具体操作,选最大的:
      操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
      操作二:第i天没有操作,而是沿用前一天买入的状态,即dp[i][1] = dp[i - 1][1]
    • 达到 dp[i][2]状态也有两个操作:
      操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
      操作二:第i天没有操作,沿用前一天卖出股票的状态,即dp[i][2] = dp[i - 1][2]
    • dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
    • dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
  • dp数组如何初始化:由于一天内可以买卖一次也可以买卖两次,所以dp[0][1] = -prices[0];dp[0][3] = -prices[0];,而卖出的就是0。
  • 确定遍历顺序:从第二天开始正序遍历。
  • 打印dp数组,用于debug

代码

class Solution {public int maxProfit(int[] prices) {int[][] dp = new int[prices.length][5]; // 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.length; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.length - 1][4];}
}

分析:时间复杂度:O(n),空间复杂度:O(5n)。

这篇关于代码随想录算法训练营第四十六天 | 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088337

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int