biostar handbook(十)|如何进行变异检测

2024-06-23 21:08

本文主要是介绍biostar handbook(十)|如何进行变异检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2013053-e65d78595eb8ffff.png
变异检测流程

什么是基因组变异

基因组变异是一个定义比较模糊的概念. 所谓的变异是相对于一个完美的“参考基因组”而言。但是其实完美的“参考基因组”并不存在,因为我们只是选择某一个物种里的其中似乎比较正常的个体进行测序组装,然后基于它进行后续的研究。简单的说,参考和变异是相对而言,变异也可能完全正常。

常见的基因组变异一般可以归为如下几类:

  • SNP, 单核苷酸多态性, 一个碱基的变化
  • INDEL,插入或缺失, 一个碱基的增加或移除
  • SNV, 单核苷酸变异,一个碱基的改变,可以是SNP,也可以是INDEL
  • MNP, 多核苷酸多态性,一个区块中有多个保守的SNP
  • MNV,多核苷酸变异,一个区块中有多个SNP或INDEL
  • short variations, 小于50bp的变异
  • large-scale variation, 大于50bp的大规模变异
  • SV, 结构变异,通常是上千个碱基,甚至是染色体级别上的变异

研究这些变异需要用到不同的手段,其中普通的DNA二代测序在寻找20bp以下的变异比较靠谱,对于大于1kb的结构变异而言,采用光学图谱(Bionanogenomics)可能更加靠谱一点。因此,对于目前最常用的二代测序而言,还是尽量就找SNP和INDEL吧,几个碱基的变化找起来还是相对容易些和靠谱些。

对于SNP的定义这里也要注意下,最初的SNP的定义指的是单个碱基导致的多态性,在群体中广泛存在(1%),可用来作为分子标记来区分不同个体。目前的定义比较粗暴一点,就是那个和“参考基因组”不同的单个位点。值得注意的是,这个概念可能不同人还有不同的定义,当你和别人就某个问题争执的时候,最好问问他是如何定义这个基本概念。由于SNP的广泛存在,并且变异可能会导致疾病,也就是存在某些SNP会导致疾病。Online Mendelian Inheritance in Man,就是一个人类遗传疾病数据库,建议去看下。

最后说下genotype和haplotype。genotype,基因型指的是一个个体的遗传组成。但是对于基因组变异而言,基因型通常指的是个体在某个位点上的等位基因情况。haplotype, 单倍型最初指的是从单个亲本中遗传的一组基因,而在基因组变异背景下,则是指一组变异。

一次简单的变异检测实战

变异检测(variant calling)即通过比较参考序列和比对结果来找到两者的不同并记录,基本上可以分为如下几步:

  • 序列比对
  • 比对后处理(可选)
  • 从联配中确定变异
  • 根据某些标准进行过滤
  • 对过滤的变异注释

这里面的每一个可选的工具都有很多,不同工具组合后的分析流程得到的结果可能会有很大差异。在变异检测这一部分目前就有很多软件,但是常用并且相对比较可靠的工具有如下几个:

  • bcftools: http://www.htslib.org/doc/bcftools.html
  • FreeBayes: https://github.com/ekg/freebayes
  • GATK: https://software.broadinstitute.org/gatk/
  • VarScan2: http://varscan.sourceforge.net/

当然这些工具最初都是用于人类基因组。

以埃博拉基因组为例完成一次简单的Variant Calling,所需工具为efetch, fastq-dump, emboss/seqretbwa, samtoolsFreeBayessnpEff。这些都可以通过conda快速安装。

第一步: 获取参考基因组序列,并建立索引

# 建立文件夹
mkdir -p refs
# 根据Accession下载
ACC=AF086833
REF=refs/$ACC.fa
efetch -db=nuccore -format=fasta -id=$ACC | seqret -filter -sid $ACC > $REF
bwa index $REF

第二步: 获取需要比对的测序数据, 以前10w条为例

# 仅要前10w条read
SRR=SRR1553500
fastq-dump -X 100000 --split-files $SRR

第三步:序列比对

BAM=$SRR.bam
R1=${SRR}_1.fastq
R2=${SRR}_2.fastq
TAG="@RG\tID:$SRR\tSM:$SRR\tLB:$SRR"
bwa mem -R $TAG $REF $R1 $R2 | samtools sort > $BAM
samtools index $BAM

第四步:使用freebayes或HaplotypeCaller(GATK4)检测变异

freebayes -f $REF $BAM > ${SRR}_freebayes.vcf
gatk HaplotypeCaller -R $REF-I $BAM -stand-call-conf 30 \-bamout bamout.bam--genotyping-mode DISCOVERY-O ${SRR}_haplotypecaller.vcf

用IGV可视化的效果如下:

2013053-e372b9241c285a31.jpg
IGV对BAM和VCF文件进行可视化

这是最简单的变异检测流程,对于找到的变异还可以进一步过滤,这一部分内容见call variant中关于snp筛选的一些思考

第五步:变异标准化(可选)

由于VCF文件的灵活性,同一种变异可以通过不同的形式表示, 如下图

2013053-2c0545f3d78aa314.jpg
出自 "Unified representation of genetic variants"

变异标准化按照如下规则对变异位点表示进行简化

  • 尽可能以少的字符表示变异
  • 无等位基因可以标识为长度为0
  • 变异位点必须左对齐

看起来很复杂,其实操作起来很简单

bcftools norm -f $REF SRR1553500_freebayes.vcf  > SRR1553500_freebayes_norm.vcf
# Lines   total/split/realigned/skipped:    493/0/0/0

大部分软件,如GATK, freebayes已经是标准化的结果。

变异检测那么简单吗?

经过简单的实战之后,似乎变异检测是一件非常容易的事情,只要敲几行命令就行了。当然最开始我也是想的,毕竟无知者无畏,但是了解的越多,你就会发现事情并没有那么简单。**大部分基因组相关的DNA序列有一些特性是人类的直觉所不能理解的,因为这需要考虑一些背景。

  1. DNA序列可以非常的长
  2. A/T/G/C能够构建任意组合的DNA序列,因此在完全随机情况下,即使随机分配也能产生各种各样的模式。
  3. DNA序列只有部分会受到随机影响,基本上这部分序列都是有功能的。
  4. 不同物种的不同的DNA序列受到不同的随机性影响
  5. 我们按照实验流程将大片段DNA破碎成小的部分,并尝试通过和参考基因组比对找到原来的位置。只有它依旧和原来的位置非常靠近,才能进一步寻找变异。

因此即便序列和基因组某个序列非常接近,从算法的角度是正确比对,但其实偏离了原来正确的位置,那么从这部分找到的变异也是错误的。那我们有办法解决这个问题嘛?基本上不可能,除非技术进步后,我们可以一次性通读所有序列。当然目前比较常用的方法是找到最优变异,并且那个变异能更好的解释问题,且和每条read中的变异都是一致的。这就是目前变异检测软件常用策略:realignment或probabilistic alignment。

变异注释

变异注释意味着猜测遗传变异(SNP, INDEL, CNY, SV)对基因功能,转录本和蛋白序列以及调控序列的影响。为了对变异进行预测,预测软件需要你提供基因组注释信息,并且注释信息的完善程度决定了预测的准确性。变异预测一般会提供如下结果

  • 变异位点所在基因组注释的位置,是转录本上游,还是编码区,还是非编码RNA
  • 列举出收到影响的转录本和基因
  • 确定变异在蛋白序列上的影响, 如stop_gained(终止密码子提前), missense(错义), stop_lost(终止密码子缺失), frameshift(移码)等
  • 对于人类,还可以和已知的位点进行匹配

这些效应的定义可以在序列本体论查询.

变异注释常用软件有:VEP, snpEFF, AnnoVar, VAAST2. 其中VEP是网页工具http://asia.ensembl.org/Tools/VEP, 使用很方便,可惜支持的物种有限。snpEFF可以说是支持物种最多的工具,这里使用它。

snpEff databases > listing.txt
# 确认物种名
grep -i ebola databases
# 下载
snpEff download ebola_zaire

下载之后还需要检查一下snpEFF提供的注释是否和我们所使用参考基因组一致.

snpEff dump ebola_zaire | less

很不幸的是,snpEFF提供的是基于KJ660346构建的数据库,而我们使用的是AF086833。因此需要重新下载对应的参考基因组重新比对,进行注释。对饮参考基因组的地址为https://www.ncbi.nlm.nih.gov/nuccore/KJ660346.1?report=fasta

snpEff ebola_zaire ${SRR}_freebayes.vcf > ${SRR}_annotated.vcf

最终会生成注释后的VCF文件以及变异位点的描述性报告。

这篇关于biostar handbook(十)|如何进行变异检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088276

相关文章

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

企业如何进行员工的网络安全意识培训?

企业网络安全意识培训的重要性         企业网络安全意识培训是提升员工网络安全素质的关键环节。随着网络技术的快速发展,企业面临的网络安全威胁日益增多,员工的网络安全意识和技能水平直接关系到企业的信息安全和业务连续性。因此,企业需要通过系统的网络安全意识培训,提高员工对网络安全的认识和防范能力,从而降低企业在面对潜在安全风险时的损失和影响。 企业网络安全意识培训的方法         企

使用JWT进行安全通信

在现代Web应用中,安全通信是至关重要的。JSON Web Token(JWT)是一种流行的安全通信方式,它允许用户和服务器之间安全地传输信息。JWT是一种紧凑的、URL安全的表示方法,用于在两方之间传输信息。本文将详细介绍JWT的工作原理,并提供代码示例帮助新人理解和实现JWT。 什么是JWT? JWT是一种开放标准(RFC 7519),它定义了一种紧凑且自包含的方式,用于在各方之间以JSO

ccp之间是不可以直接进行+,-的,要用ccpSub和ccpAdd。

1.  http://www.cnblogs.com/buaashine/archive/2012/11/12/2765691.html  上面有好多的关于数学的方面的知识,cocos2dx可能会用到的 2.学到了   根据tilemap坐标得到层上物体的id int oneTiled=flagLayer->tileGIDt(tilePos);

基于深度学习的轮廓检测

基于深度学习的轮廓检测 轮廓检测是计算机视觉中的一项关键任务,旨在识别图像中物体的边界或轮廓。传统的轮廓检测方法如Canny边缘检测和Sobel算子依赖于梯度计算和阈值分割。而基于深度学习的方法通过训练神经网络来自动学习图像中的轮廓特征,能够在复杂背景和噪声条件下实现更精确和鲁棒的检测效果。 深度学习在轮廓检测中的优势 自动特征提取:深度学习模型能够自动从数据中学习多层次的特征表示,而不需要

自动驾驶---Perception之Lidar点云3D检测

1 背景         Lidar点云技术的出现是基于摄影测量技术的发展、计算机及高新技术的推动以及全球定位系统和惯性导航系统的发展,使得通过激光束获取高精度的三维数据成为可能。随着技术的不断进步和应用领域的拓展,Lidar点云技术将在测绘、遥感、环境监测、机器人等领域发挥越来越重要的作用。         目前全球范围内纯视觉方案的车企主要包括特斯拉和集越,在达到同等性能的前提下,纯视觉方

使用 GoPhish 和 DigitalOcean 进行网络钓鱼

配置环境 数字海洋VPS 我创建的丢弃物被分配了一个 IP 地址68.183.113.176 让我们登录VPS并安装邮件传递代理: ssh root@68.183.113.176apt-get install postfix 后缀配置中的点变量到我们在 DigitalOcean 中分配的 IP:mynetworks nano /etc/postfix/main.cf