NECAT: Nanopore数据的高效组装工具

2024-06-23 20:18

本文主要是介绍NECAT: Nanopore数据的高效组装工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NECAT是肖传乐老师团队开发的一个针对Nanopore数据组装的软件,目前该工具尚未发表,除了https://github.com/xiaochuanle/NECAT有软件的介绍外,暂时没有中文资料介绍NECAT的使用。

太长不看的结论: Nanopore的组装推荐用下NECAT。组装之后是先用MEDAKA做一遍三代polish,然后用NextPolish默认参数做二代polish。

这篇将会以一篇发表在Nature Communication上的拟南芥nanopore数据介绍如何使用NECAT进行组装,运行在CentOS Linux release 7.3.1611 (Core),64G为内存, 20线程(Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz),下面是正文。

软件安装

NECAT可以在https://github.com/xiaochuanle/NECAT/releases/页面获取最新的软件下载地址,这里下载的是0.01版本。

wget https://github.com/xiaochuanle/NECAT/releases/download/v0.01/necat_20190307_linux_amd64.tar.gz
tar xzvf necat_20190307_linux_amd64.tar.gz
export PATH=$PATH:$(pwd)/NECAT/Linux-amd64/bin

目前0.01版本不支持gz文件作为输入,但后续版本应该会支持。

实战

第一步: 新建一个分析项目

mkdir NECAT && cd NECAT

以发表在NC上的拟南芥数据为例, 下载该数据

# 三代测序
wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR217/003/ERR2173373/ERR2173373.fastq.gz
seqkit seqkit fq2fa ERR2173373.fastq.gz | gzip -c > ERR2173373.fasta

第二步: 创建配置文件

necat.pl config ath_config.txt 

配置文件中,主要修改如下几个参数

PROJECT=athaliana #项目名
ONT_READ_LIST=read_list.txt #read所在路径文件
GENOME_SIZE=120000000 #基因组大小
THREADS=20 # 线程数
MIN_READ_LENGTH=3000 # 最短的read长度
CNS_OUTPUT_COVERAGE=45 # 用于组装的深度

参数中还有一个,NUM_ITER=2,它并非是简单的重复2次纠错,它的每一轮的校正目的其实不同,第一轮的优先级是敏感度(senstitive), 第二轮之后主要追求速度(fast)。

除了上面的配置参数外,其他参数可以不需要修改,使用默认的值即可。需要修改的话,参考最后的参数说明部分。

第三步: 序列纠错

necat.pl correct ath_config.txt &

纠错后的reads在athaliana/1-consensus/cns_final.fasta

cns_finla.fasta的统计信息会输出在屏幕中, 或者自己用fsa_rd_stat也能得到同样的结果

Count: 206342
Tatal: 3102480870
Max: 112992
Min: 1010
N25: 31940
L25: 18989
N50: 21879
L50: 48506
N75: 13444
L75: 93215

此外我还用time获取了运行时间,纠错花了大概一个小时。

real    55m31.451s
user    815m32.801s
sys     7m55.039s

第四步: contig组装

necat.pl assemble ath_config.txt &

结果在athaliana/4-fsa/contigs.fasta

关于contigs.fata统计信息会输出在屏幕上,同样用fsa_rd_stat 也可以。

Count: 162
Tatal: 122293198
Max: 14562810
Min: 1214
N25: 13052494
L25: 3
N50: 9503368
L50: 5
N75: 4919866
L75: 10

时间用了75分钟

real    74m53.127s
user    1308m29.534s
sys     12m5.032s

第五步: contig搭桥

necat.pl bridge ath_config.txt

结果在athaliana/6-bridge_contigs/bridged_contigs.fasta

Count: 127
Tatal: 121978724
Max: 14562810
Min: 2217
N25: 13193939
L25: 3
N50: 11146374
L50: 5
N75: 5690371
L75: 9

从N50和N75可以看出这一步会提高组装的连续性。

组装结果polish

对Nanopore组装结果进行polish的常用软件有下面3个

  • Medaka
  • nanopolish
  • racon

由于拟南芥的基因组比较小,我分别用了Medaka和racon对输出结果进行polish(因为没有原始信号数据,因此nanopolish用不了),代码如下

Medaka

NPROC=20
BASECALLS=ERR2173373.fasta
DRAFT=athaliana/6-bridge_contigs/bridged_contigs.fasta
OUTDIR=medaka_consensus
medaka_consensus -i ${BASECALLS} -d ${DRAFT} -o ${OUTDIR} -t ${NPROC} -m r941_min_high

三轮Racon:

gzip -dc ERR2173373.fastq.gz  > ERR2173373.fastq
minimap2 -t 20 ${DRAFT} ERR2173373.fastq > round_1.paf 
racon -t 20 ERR2173373.fastq round_1.paf ${DRAFT} > racon_round1.fasta
minimap2 -t 20 racon_round1.fasta ERR2173373.fastq > round_2.paf 
racon -t 20 ERR2173373.fastq round_2.paf racon_round1.fasta> racon_round2.fasta
minimap2 -t 20 racon_round2.fasta ERR2173373.fastq > round_3.paf
racon -t 20 ERR2173373.fastq round_3.paf racon_round2.fasta> racon_round3.fasta

在后续评估质量的时候,我发现单纯用三代polish的结果还不是很好,因此我用他们提供的二代测序,用NextPolish对NECAT的结果进行polish。

# 二代测序
prefetch ERR2173372
fasterq-dump -O  . ERR2173372

run.cfg内容如下, 其中sgs.fofn记录的就是解压后的ERR2173372_1.fastq和ERR2173372_2.fastq的路径

[General]                
job_type = local  
job_prefix = nextPolish  
task = 1212 
rewrite = no 
rerun = 3
parallel_jobs =  8  
multithread_jobs = 20 
genome = input.fasta 
genome_size = auto 
workdir = ./nextpolish 
polish_options = -p {multithread_jobs}
[sgs_option]             
sgs_fofn = ./sgs.fofn 
sgs_options = -max_depth 100 -bwa

我考虑了两种情况,一种是直接用二代polish,另一种是三代polish之后接二代polish。

结果评估

计算时间上,我之前用Canu跑了相同的数据,设置原始错误率0.5,纠错后错误率为0.144,用3个节点(每个节点12个线程),运行了3天时间,但是NECAT只需要3个小时左右就能完成相同的分析,这个速度差异实在是太明显了。

用Minimap2 + dotPlotly绘制CANU,NECAT和拟南芥参考基因组的共线性图

minimap2 -t 20 -x asm5 Athaliana.fa NECAT.fa > NECAT.paf
pafCoordsDotPlotly.R  -i NECAT.paf -o NECAT  -l -p 10 -k 5
minimap2 -t 20 -x asm5 Athaliana.fa CANU.fa > CANU.paf
pafCoordsDotPlotly.R  -i CANU.paf -o CANU  -l -p 10 -k 5

NECAT的结果

2013053-94524c7fff345aac.png
NECAT

CANU的结果

2013053-a635e6036d1d2cf8.png
CANU

NECAT和CANU都和参考基因组有着良好的共线性,但是NECAT的连续性更好,几乎成一条直线。

之后,我使用了QUAST来评估Canu,NECAT初步组装,NECAT用Medaka, nanopolish和racon纠错的结果(MD: MEDAKA, RC: RACON, NP:NextPolish)。

quast.py -t 100 --output-dir athaliana --circos \CANU.fa \NECAT.fa \NECAT_MD.fa \NECAT_MD_NP.fa \NECAT_NP.fa \NECAT_RC.fa \NECAT_RC_NP.fa \-r Athaliana.fa  \-g TAIR10_GFF3_genes.gff &

一些描述基本信息

CANU        N50 = 4875070,  L50 = 7, Total length = 114689024, GC % = 36.09 
NECAT       N50 = 11146374, L50 = 5, Total length = 121978724, GC % = 36.50
NECAT_MD    N50 = 11216803, L50 = 5, Total length = 122101599, GC % = 36.54
NECAT_MD_NP N50 = 11405151, L50 = 5, Total length = 124142955, GC % = 36.30
NECAT_NP    N50 = 11399084, L50 = 5, Total length = 124735066, GC % = 36.36
NECAT_RC    N50 = 11212098, L50 = 5, Total length = 122519370, GC % = 36.4
NECAT_RC_NP N50 = 11406553, L50 = 5, Total length = 124618502, GC % = 36.34

在BUSCO完整度上, 以embryophyta_odb10作为物种数据库, 其中ONTmin_IT4是发表的文章里的结果, Athalina则是拟南芥的参考基因组,我们以它们的BUSCO值作为参照。

Athalina     : C:98.6%[S:98.0%,D:0.6%],F:0.4%, M:1.0%, n:1375
ONTmin_IT4   : C:98.4%[S:97.7%,D:0.7%],F:0.7%, M:0.9%, n:1375
CANU         : C:22.9%[S:22.8%,D:0.1%],F:20.2%,M:56.9%,n:1375
NECAT        : C:36.6%[S:36.6%,D:0.0%],F:22.9%,M:40.5%,n:1375
NECAT_MEDAKA : C:53.6%[S:53.2%,D:0.4%],F:21.0%,M:25.4%,n:1375
NECAT_RACON  : C:45.3%[S:45.2%,D:0.1%],F:23.1%,M:31.6%,n:1375

二代Polish后的BUSCO结果如下(MD: MEDAKA, RC: RACON, NP:NextPolish):

Athalina   : C:98.6%[S:98.0%,D:0.6%],F:0.4%,M:1.0%,n:1375
ONTmin_IT4 : C:98.4%[S:97.7%,D:0.7%],F:0.7%,M:0.9%,n:1375
NECAT_NP   : C:98.6%[S:97.9%,D:0.7%],F:0.4%,M:1.0%,n:1375   
NECAT_MD_NP: C:98.7%[S:98.0%,D:0.7%],F:0.4%,M:0.9%,n:1375
NECAT_RC_NP: C:98.5%[S:97.8%,D:0.7%],F:0.4%,M:1.1%,n:1375

从以上这些数据,你可以得到以下几个洞见:

  • 在Nanopore的组装上,NECAT效果优于Canu,无论是连续性还是N50上
  • MEDAKA三代polish效果好于RACON。在速度上,MEDAKA比三遍RACON都慢,并且MEDAKA会将一些可能的错误组装给打断
  • Nanopore的数据用NECAT组装后似乎用NextPolish进行polish后就行,但是由于物种比较小,可能不具有代表性。

结论: Nanopore的组装建议用NECAT。组装之后是先用MEDAKA做一遍三代polish,然后用NextPolish默认参数做二代polish。

配置文件补充

这部分对配置文件做一点简单补充。

下面这些参数相对简单,不需要过多解释,按照自己需求修改

  • CLEANUP: 运行完是否清理临时文件,默认是0,表示不清理
  • USE_GRID: 是否使用多节点, 默认是false
  • GRID_NODE: 使用多少个节点,默认是0,当USE_GRID为true时,按照自己实际情况设置

以下的参数则是需要根据到具体的软件中去查看具体含义,需要和软件开发者讨论

  • OVLP_FAST_OPTIONS: 第二轮纠错时, 传给oc2pmov
  • OVLP_SENSITIVE_OPTIONS: 第一轮纠错时, 传给oc2pmov
  • CNS_FAST_OPTIONS: 第二轮纠错时,传给oc2cns
  • CNS_SENSITIVE_OPTIONS: 第一轮纠错时,传给oc2cns
  • TRIM_OVLP_OPTIONS: 传给oc2asmpm
  • ASM_OVLP_OPTIONS: 传给oc2asmpm
  • FSA_OL_FILTER_OPTIONS: 参数传给fsa_ol_filter
  • FSA_ASSEMBLE_OPTIONS: 参数传给fsa_assemble
  • FSA_CTG_BRIDGE_OPTIONS: 参数传给fsa_ctg_bridge

参考资料

  • https://github.com/xiaochuanle/NECAT

这篇关于NECAT: Nanopore数据的高效组装工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088170

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只