如何确定公共转录组数据集的来源性别

2024-06-23 19:58

本文主要是介绍如何确定公共转录组数据集的来源性别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

太长不看版: 文献报道XIST和RPS4Y1是区分性别的两个高可信度的标记基因,因此你没有必要去用其他性染色体上的基因去确定数据集的性别。

不仅仅是在使用公共的单细胞转录组数据,其实早在公共芯片数据或者RNA-seq数据挖掘中,就有人在考虑一个问题,这个数据的元信息作者会不会搞错了呢?

以性别为例,我们很容易想到表达Y染色体上基因数据肯定是男性,但是我们也知道基因也不是任何时刻都表达,所以如果一个Y染色体上的基因不表达,ta未必是女性。因此我们需要一个比较可靠的标记基因,来确保对性别的区别是正确的。

我最初的想法,也是对Y染色体的基因逐个看表达,但是转念想到,在我这个数据集中有用的标记未必适用于其他数据集呀。因此通过一波检索,我找到了一篇文献,里面给出了两个关键基因,XIST和RPS4Y1。

文献支持

接着我用Seurat提供的一个公共数据集进行测试,这个数据包括了不同技术处理的PBMC数据,预处理的代码如下。

library(Seurat)
library(harmony)
data("pbmcsca")
library(dplyr)pbmc <-  pbmcsca%>%Seurat::NormalizeData(verbose = FALSE) %>%FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>% ScaleData(verbose = FALSE) %>% RunPCA(pc.genes = pbmc@var.genes, npcs = 20, verbose = FALSE)pbmc <- RunHarmony(pbmc, c("Experiment", "Method"))
pbmc <- RunUMAP(pbmc, reduction = "harmony", dims = 1:20)

最终我们获得了使用harmony去除批次效应后的数据集,接着我们用小提琴图分来源对XIST和RPS4Y1进行可视化

VlnPlot(pbmc, c("XIST","RPS4Y1"), group.by = "Method")

结果如下

小提琴图1

你会很奇怪为什么CEL-Seq2, Drop-Seq, InDrops, Seq-Well,Smart-seq2什么同时表达这两个基因呢?

很简单,因为这几种方法同时还包括两种实验,pbmc1和pbmc2

分群比较

当我们筛选所有的pbmc1实验进行展示

pbmc_sub <- subset(pbmc,  Experiment == "pbmc1")
VlnPlot(pbmc_sub, c("XIST","RPS4Y1"), group.by = "Method")

你会发现这两个是完美的互斥关系

pbmc1

如果你筛选出pbmc2进行展示
pbmc_sub <- subset(pbmc,  Experiment == "pbmc2")
VlnPlot(pbmc_sub, c("XIST","RPS4Y1"), group.by = "Method")

同样的,你得到一个完美的互斥结果

pbmc2

小结: XIST和RPS4Y1是区分性别的两个高可信度的标记基因,如果以后使用人的公共数据集的时候,可以用这个两个基因确定性别。

参考资料:

  • https://www.sciencedirect.com/topics/neuroscience/xist-gene
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275083/
  • https://www.sciencedirect.com/science/article/pii/S1872497316302034

这篇关于如何确定公共转录组数据集的来源性别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088131

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核