动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6 图片增广

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
import torch 
import torchvision
from d2l import torch as d2l
from torch import nn 
from PIL import Image
import liliPytorch as lp
from torch.utils.data import Dataset, DataLoaderplt.figure('cat')
img = Image.open('../limuPytorch/images/cat.jpg')
plt.imshow(img)def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):"""img: 输入的图像。aug: 增强函数,接受一个图像作为输入并返回一个增强后的图像。num_rows: 显示增强后图像的行数,默认值为2。num_cols: 显示增强后图像的列数,默认值为4。scale: 显示图像的缩放比例,默认值为1.5。"""# 应用增强函数 aug 到输入图像 img 上 num_rows * num_cols 次Y = [aug(img) for _ in range(num_rows * num_cols)]# 将增强后的图像列表 Y 以 num_rows 行和 num_cols 列的网格形式显示,缩放比例为 scale。d2l.show_images(Y, num_rows, num_cols, scale=scale)# 图像各有50%的几率翻转
# 左右翻转,通常不会改变对象的类别。这是最早和最广泛使用的图像增广方法之一。
apply(img,torchvision.transforms.RandomHorizontalFlip())# 上下翻转,不如左右图像翻转那样常用。
apply(img,torchvision.transforms.RandomVerticalFlip())# 随机裁减
# (200,200)是图片的大小,scale表示随机裁减为原来的比例,ratio是长宽比
shape_aug = torchvision.transforms.RandomResizedCrop((200,200),scale=(0.1,1),ratio=(0.5,2), 
)apply(img,shape_aug)# 改变颜色
# 四个方面:亮度、对比度、饱和度和色调
# 亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
# 亮度
# 随机值为原始图像的50%到150%之间。
apply(img, torchvision.transforms.ColorJitter(brightness=0.5, contrast=0, saturation=0, hue=0)
)#色调
apply(img, torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0.5)
)#同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
color_aug = torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)# 结合多种图像增广方法
augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
# plt.show()# 使用图像增广进行训练
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",download=True)#展示前32个训练图像
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8)
plt.show()# 使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,
# 即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor()])test_augs = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])#测试
def load_cifar10(is_train, augs, batch_size):dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,transform=augs, download=True)dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,shuffle=is_train, num_workers=4)return dataloadernet = d2l.resnet18(10, 3)
batch_size = 256
lr=0.001
num_epochs = 10
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()

这篇关于动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088099

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11