“序列优化探究:最长上升子序列的算法发现与应用“

2024-06-23 18:04

本文主要是介绍“序列优化探究:最长上升子序列的算法发现与应用“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最长上升子序列

最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。

这是一个经典的动态规划问题。

假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

具体地,我们可以这样定义dp[i]:

for (int j = 0; j < i; j++)if nums[j] < nums[i]dp[i] = max(dp[i], dp[j] + 1)

其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。

下面是一个使用动态规划求解LIS问题的C++代码:

代码(动态规划)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列vector<int> dp(n, 1);// 从nums[1] 开始遍历整个数组for (int i = 1; i < n; i++) {// 从前往后比那里之前的元素for (int j = 0; j < i; j++) {// j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1);}}}// 状态数组中最大的值就是最长上升子序列的长度return *max_element(dp.begin(), dp.end());}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

首先定义了一个长度为 n 的 dp 数组,将其初始化为 1,因为每个元素本身都可以构成一个长度为 1 的上升子序列。

然后,用两个嵌套的循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

最后,我们返回dp数组中的最大值作为最长上升子序列的长度。

上述算法的时间复杂度为O(n^2),可以通过使用二分查找来将时间复杂度降为O(nlogn)。

具体来说,我们可以维护一个长度为 len 的子序列,其中 len 表示当前子序列的长度。

遍历所有的元素,如果当前元素比子序列中的最后一个元素还大,就将其添加到子序列的末尾,并将子序列长度加1。

否则,我们可以用二分查找找到子序列中第一个大于等于当前元素的位置,将该位置上的元素替换为当前元素,从而保证子序列仍然是上升的。

最终,子序列的长度就是最长上升子序列的长度。

下面是一个使用二分查找求解LIS问题的C++代码:

代码(二分优化)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 保存状态vector<int> dp;//依次遍历各个元素for (int i = 0; i < n; i++) {// 二分法找到第一个大于等于 nums[i] 的元素的位置int pos = lower_bound(dp.begin(), dp.end(), nums[i]) - dp.begin();// 如果没找到,就把 nums[i] 直接加入到 状态数组if (pos == dp.size()) {dp.push_back(nums[i]);} // 否则,用 nums[i] 替换该位置元素 else {dp[pos] = nums[i];}}// 状态数组的长度就是最长子序列的长度return dp.size();}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

定义了一个空的dp数组,表示当前最长上升子序列。

对于每个元素,可以用lower_bound函数找到dp数组中第一个大于等于当前元素的位置pos。

然后将该位置上的元素替换为当前元素。如果pos等于dp的长度,表示当前元素比子序列中的所有元素都大,因此可以将其添加到子序列的末尾。

最终,子序列的长度就是最长上升子序列的长度。

时间复杂度为O(nlogn),空间复杂度为O(n)。可以看到,使用二分查找算法的时间复杂度要比暴力算法低得多,因此在实际应用中更为常用。

Java代码

import java.util.*;
public class Main{public static void main(String[] args){Scanner scan = new  Scanner(System.in);int N = 1010;int[] f = new int[N]; //以i为结尾的数的上升子序列中最大值int[] a = new int[N]; //数列int n = scan.nextInt();for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++ ){// 以i为结尾的数的上升子序列中最大值,每个数最低的个数就是1,所以将每一个数一开始初始化成1f[i] = 1; //求以i为结尾的最长上升子序列,就是求他的f[i - 1] 的最长上升子序列加上1,就是i本身for(int j = 1 ; j < i ; j ++){if(a[i] > a[j])    // 枚举前面的数,如果前面比i这个数小的就加1,一直加到枚举到i - 1f[i]  = Math.max(f[i],f[j] + 1);}     }int res = 0;for(int i = 1 ; i <= n ; i ++ ){res = Math.max(res,f[i]);}System.out.println(res);}
}

类型题:怪盗基德的滑翔翼

题目描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

分析

怪盗基德可以从任意一个楼房出发,只能向低的楼房跳,倒着看就是最长上升子序列,同时他可以向两个方向跳,因此需要正反两个方向求最长上升子序列,也可以一个方向分别求上升和下降。

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N],a[N],d[N];
int k,n;int main()
{scanf("%d",&k);while(k--){scanf("%d",&n);// memset(f,1,sizeof(f));// memset(a,0,sizeof(a));for(int i=1;i<=n;i++){f[i] = 1;d[i] = 1;scanf("%d",&a[i]);}for(int i=1;i<=n;i++)for(int j=1;j<i;j++){if(a[j]<a[i])f[i] = max(f[i],f[j]+1);if(a[j]>a[i])d[i] = max(d[i],d[j]+1);}int res = 0;for(int i=1;i<=n;i++)res = max(res,max(f[i],d[i]));printf("%d\n",res);}return 0;}

这篇关于“序列优化探究:最长上升子序列的算法发现与应用“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087878

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一