“序列优化探究:最长上升子序列的算法发现与应用“

2024-06-23 18:04

本文主要是介绍“序列优化探究:最长上升子序列的算法发现与应用“,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最长上升子序列

最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。

这是一个经典的动态规划问题。

假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

具体地,我们可以这样定义dp[i]:

for (int j = 0; j < i; j++)if nums[j] < nums[i]dp[i] = max(dp[i], dp[j] + 1)

其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。

下面是一个使用动态规划求解LIS问题的C++代码:

代码(动态规划)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列vector<int> dp(n, 1);// 从nums[1] 开始遍历整个数组for (int i = 1; i < n; i++) {// 从前往后比那里之前的元素for (int j = 0; j < i; j++) {// j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1);}}}// 状态数组中最大的值就是最长上升子序列的长度return *max_element(dp.begin(), dp.end());}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

首先定义了一个长度为 n 的 dp 数组,将其初始化为 1,因为每个元素本身都可以构成一个长度为 1 的上升子序列。

然后,用两个嵌套的循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

最后,我们返回dp数组中的最大值作为最长上升子序列的长度。

上述算法的时间复杂度为O(n^2),可以通过使用二分查找来将时间复杂度降为O(nlogn)。

具体来说,我们可以维护一个长度为 len 的子序列,其中 len 表示当前子序列的长度。

遍历所有的元素,如果当前元素比子序列中的最后一个元素还大,就将其添加到子序列的末尾,并将子序列长度加1。

否则,我们可以用二分查找找到子序列中第一个大于等于当前元素的位置,将该位置上的元素替换为当前元素,从而保证子序列仍然是上升的。

最终,子序列的长度就是最长上升子序列的长度。

下面是一个使用二分查找求解LIS问题的C++代码:

代码(二分优化)

#include <bits/stdc++.h>
using namespace std;// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {int n = nums.size();// 特判空序列if (n == 0) return 0;// 保存状态vector<int> dp;//依次遍历各个元素for (int i = 0; i < n; i++) {// 二分法找到第一个大于等于 nums[i] 的元素的位置int pos = lower_bound(dp.begin(), dp.end(), nums[i]) - dp.begin();// 如果没找到,就把 nums[i] 直接加入到 状态数组if (pos == dp.size()) {dp.push_back(nums[i]);} // 否则,用 nums[i] 替换该位置元素 else {dp[pos] = nums[i];}}// 状态数组的长度就是最长子序列的长度return dp.size();}int main() {vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};int ans = lengthOfLIS(nums);cout << ans << endl;return 0;
}

在上面的代码中:

定义了一个空的dp数组,表示当前最长上升子序列。

对于每个元素,可以用lower_bound函数找到dp数组中第一个大于等于当前元素的位置pos。

然后将该位置上的元素替换为当前元素。如果pos等于dp的长度,表示当前元素比子序列中的所有元素都大,因此可以将其添加到子序列的末尾。

最终,子序列的长度就是最长上升子序列的长度。

时间复杂度为O(nlogn),空间复杂度为O(n)。可以看到,使用二分查找算法的时间复杂度要比暴力算法低得多,因此在实际应用中更为常用。

Java代码

import java.util.*;
public class Main{public static void main(String[] args){Scanner scan = new  Scanner(System.in);int N = 1010;int[] f = new int[N]; //以i为结尾的数的上升子序列中最大值int[] a = new int[N]; //数列int n = scan.nextInt();for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++ ){// 以i为结尾的数的上升子序列中最大值,每个数最低的个数就是1,所以将每一个数一开始初始化成1f[i] = 1; //求以i为结尾的最长上升子序列,就是求他的f[i - 1] 的最长上升子序列加上1,就是i本身for(int j = 1 ; j < i ; j ++){if(a[i] > a[j])    // 枚举前面的数,如果前面比i这个数小的就加1,一直加到枚举到i - 1f[i]  = Math.max(f[i],f[j] + 1);}     }int res = 0;for(int i = 1 ; i <= n ; i ++ ){res = Math.max(res,f[i]);}System.out.println(res);}
}

类型题:怪盗基德的滑翔翼

题目描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

分析

怪盗基德可以从任意一个楼房出发,只能向低的楼房跳,倒着看就是最长上升子序列,同时他可以向两个方向跳,因此需要正反两个方向求最长上升子序列,也可以一个方向分别求上升和下降。

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N],a[N],d[N];
int k,n;int main()
{scanf("%d",&k);while(k--){scanf("%d",&n);// memset(f,1,sizeof(f));// memset(a,0,sizeof(a));for(int i=1;i<=n;i++){f[i] = 1;d[i] = 1;scanf("%d",&a[i]);}for(int i=1;i<=n;i++)for(int j=1;j<i;j++){if(a[j]<a[i])f[i] = max(f[i],f[j]+1);if(a[j]>a[i])d[i] = max(d[i],d[j]+1);}int res = 0;for(int i=1;i<=n;i++)res = max(res,max(f[i],d[i]));printf("%d\n",res);}return 0;}

这篇关于“序列优化探究:最长上升子序列的算法发现与应用“的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087878

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,