《Python 机器学习》作者新作:从头开始构建大型语言模型,代码已开源

本文主要是介绍《Python 机器学习》作者新作:从头开始构建大型语言模型,代码已开源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  ChatGPT狂飙160天,世界已经不是之前的样子。

更多资源欢迎关注


自 ChatGPT 发布以来,大型语言模型(LLM)已经成为推动人工智能发展的关键技术。

近期,机器学习和 AI 研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又写了一本新书 ——《Build a Large Language Model (From Scratch)》,旨在讲解从头开始构建大型语言模型的整个过程,包括如何创建、训练和调整大型语言模型。

图片

最近,Sebastian Raschka 在 GitHub 上开源了这本新书对应的代码库。

图片

项目地址:https://github.com/rasbt/LLMs-from-scratch/tree/main?tab=readme-ov-file

对 LLM 来说,指令微调能够有效提升模型性能,因此各种指令微调方法陆续被提出。Sebastian Raschka 发推重点介绍了项目中关于指令微调的部分,其中讲解了:

  • 如何将数据格式化为 1100 指令 - 响应对;

  • 如何应用 prompt-style 模板;

  • 如何使用掩码。

图片

《Build a Large Language Model (From Scratch)》用清晰的文字、图表和示例解释每个阶段,从最初的设计和创建,到采用通用语料库进行预训练,一直到针对特定任务进行微调。

图片

具体来说,新书和项目讲解了如何:

  • 规划和编码 LLM 的所有部分;

  • 准备适合 LLM 训练的数据集;

  • 使用自己的数据微调 LLM;

  • 应用指令调整方法来确保 LLM 遵循指令;

  • 将预训练权重加载到 LLM 中。

作者介绍

图片

个人主页:https://sebastianraschka.com/

Sebastian Raschka 是一名机器学习和人工智能研究员,曾在威斯康星大学麦迪逊分校担任统计学助理教授,专门研究深度学习和机器学习。他让关于 AI 和深度学习相关的内容更加容易获得,并教人们如何大规模利用这些技术。

此外,Sebastian 热衷于开源软件,十多年来一直是一个充满热情的开源贡献者。他提出的方法现已成功应用于 Kaggle 等机器学习竞赛。

除了编写代码,Sebastian 还喜欢写作,并撰写了畅销书《Python Machine Learning》(《Python 机器学习》)和《Machine Learning with PyTorch and ScikitLearn》。

这篇关于《Python 机器学习》作者新作:从头开始构建大型语言模型,代码已开源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087378

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来