如何保证单例模式在多线程中的线程安全性

2024-06-23 12:32

本文主要是介绍如何保证单例模式在多线程中的线程安全性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                                                           如何保证单例模式在多线程中的线程安全性

        对大数据、分布式、高并发等知识的学习必须要有多线程的基础。这里讨论一下如何在多线程的情况下设计单例模式。在23中设计模式中单例模式是比较常见的,在非多线程的情况下写单例模式,考虑的东西会很少,但是如果将多线程和单例模式结合起来,考虑的事情就变多了,如果使用不当(特别是在生成环境中)就会造成严重的后果。所以如何使单例模式在多线程中是安全的显得尤为重要,下面介绍各个方式的优缺点以及可用性:

       1.立即加载(饿汉模式)

        立即加载模式就是在调用getInstance()方法前,实例就被创建了,例:

public class MyObject {
 // 立即加载方式  ==饿汉模式
private static MyObject myObject=new MyObject();
private MyObject(){
}
public static MyObject getInstance(){
return myObject;
}
}

-------------------------------------------------------------------

public class MyThread extends Thread{
public void run(){
System.out.println(MyObject.getInstance().hashCode());
}
}

------------------------------------------------------------------

public class Run {
   public static void main(String[] args) {
 MyThread t1=new MyThread();
 MyThread t2=new MyThread();
 MyThread t3=new MyThread();
 t1.start();
 t2.start();
 t3.start();
}
}

     控制台打印:

714682869
714682869
714682869

    控制台打印出3个相同的hashCode,说明只有一个对象,这就是立即加载的单例模式。但是这种模式有一个缺点,就是不能有其他的实例变量,因为getInstance()方法没有同步,所以可能出现非线程安全问题。

   2.延迟加载(懒汉模式)

    延迟加载就是在getInstance()方法中创建实例,例:

     public class MyObject {
private static MyObject myObject;
private MyObject(){
     }
 public static MyObject getInstance(){
// 延迟加载
 if(myObject!=null){  
}else{
myObject=new MyObject();
 }
return myObject;
     }
}

-------------------------------------------------------------------

public class MyThread extends Thread{
public void run(){
System.out.println(MyObject.getInstance().hashCode());
}
}

-------------------------------------------------------------------

public class Run {
public static void main(String[] args) {
MyThread t1=new MyThread();
t1.start();
}
}

     控制台打印:

1701381926

    控制台打印出一个实例。缺点:在多线程的环境中,就会出现取多个实例的情况,与单例模式的初衷相背离。所以在多线程的环境中,此实例代码是错误的。

    3.延迟加载中使用synchronized修饰方法

    public class MyObject {
private static MyObject myObject;
private MyObject(){
}
synchronized public static MyObject getInstance(){
try {
if(myObject!=null){
}else{
Thread.sleep(3000);
myObject=new MyObject();
}
} catch (InterruptedException e) {
// TODO: handle exception
e.printStackTrace();
}
return myObject;
}
}

 -------------------------------------------------------------------

public class MyThread extends Thread{
public void run(){
System.out.println(MyObject.getInstance().hashCode());
}
}      

-------------------------------------------------------------------

public class Run {
public static void main(String[] args) {
MyThread t1=new MyThread();
MyThread t2=new MyThread();
MyThread t3=new MyThread();
t1.start();
t2.start();
t3.start();
}
}

     控制台打印:

 1069480624
1069480624
1069480624

     虽然得到了相同的实例,但是我们知道synchronized是同步的,一个线程必须等待另一个线程释放锁之后才能执行,影响了效率。

      4.延迟加载中使用同步代码块,对类加锁

        public class MyObject {
private static MyObject myObject;
private MyObject(){
}
public static MyObject getInstance(){
try {
synchronized(MyObject.class){
if(myObject!=null){
}else{
Thread.sleep(3000);
myObject=new MyObject();
}
}
} catch (InterruptedException e) {
// TODO: handle exception
e.printStackTrace();
}
return myObject;
}
}

 -------------------------------------------------------------------

public class MyThread extends Thread {
public void run(){
System.out.println(MyObject.getInstance().hashCode());
}
}

 -------------------------------------------------------------------

public class Run {
public static void main(String[] args) {
MyThread t1=new MyThread();
MyThread t2=new MyThread();
MyThread t3=new MyThread();
t1.start();
t2.start();
t3.start();
}
}

       控制台打印:

1743911840
1743911840
1743911840

       此代码虽然是正确的,但getInstance()方法里的代码都是同步的了,其实也和第三种方式一样会降低效率

       5.使用DCL双检查锁机制

        DCL双检查锁机制即使用volatile关键字(使变量在多个线程中可见)修改对象和synchronized代码块

       public class MyObject {
    private volatile static MyObject myObject;
    private MyObject(){
    }
    public static MyObject getInstance(){
    try {
if(myObject!=null){
}else{
Thread.sleep(3000);
synchronized(MyObject.class){
if(myObject==null){
myObject=new MyObject();
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
// TODO: handle exception
}
    return myObject;
    }
}

 -------------------------------------------------------------------

public class MyThread extends Thread {
public void run(){
System.out.println(MyObject.getInstance().hashCode());
}
}    

 -------------------------------------------------------------------

public class Run {
public static void main(String[] args) {
MyThread t1=new MyThread();
MyThread t2=new MyThread();
MyThread t3=new MyThread();
t1.start();
t2.start();
t3.start();
}
}

     控制台打印:

798941612
798941612
798941612

      使用DCL双检查锁机制,成功解决了延迟加载模式中遇到的多线程问题,实现了线程安全。其实大多数多线程结合单例模式情况下使用DCL是一种好的解决方案。

       6.使用静态内置类实现单例模式

       public class MyObject {
// 内部类方式
private static class MyObjectHandler{
private static MyObject myObject=new MyObject();
}
private MyObject(){

}
public static MyObject getInstance(){
return MyObjectHandler.myObject;
}
}

-------------------------------------------------------------------

public class MyThread extends Thread {
public void run(){
System.out.println(MyObject.getInstance().hashCode());
}
}

 -------------------------------------------------------------------

public class Run {
public static void main(String[] args) {
MyThread t1=new MyThread();
MyThread t2=new MyThread();
MyThread t3=new MyThread();
t1.start();
t2.start();
t3.start();

}
}

    控制台打印:

1743911840
1743911840
1743911840

         使用静态内置类可以解决多线程中单例模式的非线程安全的问题,实现线程安全,但是如果对象是序列化的就无法达到效果了。

       7.序列化与反序列化的单例模式

 需要readResolve方法

        public class MyObject implements Serializable{
private static final long serialVersionUID=888L;
// 内部类
private static class MyObjectHandler{
private static final MyObject myObject=new MyObject();
}
private MyObject(){

}
public static MyObject getInstance(){
return MyObjectHandler.myObject;
}
 protected Object readResolve() throws ObjectStreamException {
 System.out.println("调用了readResolve方法");
return MyObjectHandler.myObject;
 }
}

-------------------------------------------------------------------

public class SaveAndRead {
public static void main(String[] args) {
try {
MyObject myObject=MyObject.getInstance();
FileOutputStream fosRef=new FileOutputStream(new File("myObjectFile.txt"));
ObjectOutputStream oosRef=new ObjectOutputStream(fosRef);
oosRef.writeObject(myObject);
oosRef.close();
fosRef.close();
System.out.println(myObject.hashCode());
} catch (FileNotFoundException e) {
// TODO: handle exception
} catch(IOException e){
e.printStackTrace();
}
try {
FileInputStream fisRef=new FileInputStream(new File("myObjectFile.txt"));
ObjectInputStream iosRef=new ObjectInputStream(fisRef);
MyObject myObject=(MyObject) iosRef.readObject();
iosRef.close();
fisRef.close();
System.out.println(myObject.hashCode());
} catch (FileNotFoundException e) {
// TODO: handle exception
} catch(IOException e){
e.printStackTrace();
} catch(ClassNotFoundException e){
e.printStackTrace();
}
}
}   

      控制台打印:

 1988716027
调用了readResolve方法
1988716027

      调用了readResolve方法后就是单例了,如果我们注释掉readResolve方法,

      控制台打印:

977199748
536468534

       8.使用static代码块实现单例模式

        public class MyObject {
private static MyObject instance=null;
private MyObject(){

}
static {
instance=new MyObject();
}
public static MyObject getInstance(){
return instance;
}
}

-------------------------------------------------------------------

public class MyThread extends Thread{

public void run(){
for (int i = 0; i <5; i++) {
System.out.println(MyObject.getInstance().hashCode());
}
}
}

-------------------------------------------------------------------

public class Run {
public static void main(String[] args) {
MyThread t1=new MyThread();
MyThread t2=new MyThread();
MyThread t3=new MyThread();
t1.start();
t2.start();
t3.start();

}
}

   控制台打印:

798941612
798941612
798941612

    由此可见,使用static代码块也可以实现单例模式,因为静态代码块在使用类的时候已经执行了。

这篇关于如何保证单例模式在多线程中的线程安全性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087162

相关文章

如何开启和关闭3GB模式

https://jingyan.baidu.com/article/4d58d5414dfc2f9dd4e9c082.html

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

Android多线程下载见解

通过for循环开启N个线程,这是多线程,但每次循环都new一个线程肯定很耗内存的。那可以改用线程池来。 就以我个人对多线程下载的理解是开启一个线程后: 1.通过HttpUrlConnection对象获取要下载文件的总长度 2.通过RandomAccessFile流对象在本地创建一个跟远程文件长度一样大小的空文件。 3.通过文件总长度/线程个数=得到每个线程大概要下载的量(线程块大小)。

Builder模式的实现

概念 在创建复杂对象时,将创建该对象的工作交给一个建造者,这个建造者就是一个Builder。在日常的开发中,常常看到,如下这些代码: AlertDialog的实现 AlertDialog.Builder builder = new AlertDialog.Builder(context);builder.setMessage("你好建造者");builder.setTitle

Java线程面试题(50)

不管你是新程序员还是老手,你一定在面试中遇到过有关线程的问题。Java语言一个重要的特点就是内置了对并发的支持,让Java大受企业和程序员的欢迎。大多数待遇丰厚的Java开发职位都要求开发者精通多线程技术并且有丰富的Java程序开发、调试、优化经验,所以线程相关的问题在面试中经常会被提到。 在典型的Java面试中, 面试官会从线程的基本概念问起, 如:为什么你需要使用线程,

[分布式网络通讯框架]----ZooKeeper下载以及Linux环境下安装与单机模式部署(附带每一步截图)

首先进入apache官网 点击中间的see all Projects->Project List菜单项进入页面 找到zookeeper,进入 在Zookeeper主页的顶部点击菜单Project->Releases,进入Zookeeper发布版本信息页面,如下图: 找到需要下载的版本 进行下载既可,这里我已经下载过3.4.10,所以以下使用3.4.10进行演示其他的步骤。

线程池ThreadPoolExecutor类源码分析

Java并发编程:线程池的使用   在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:   如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。   那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

线程Lock

线程Lock   在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。   也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从s

线程封装,互斥

文章目录 线程封装线程互斥加锁、解锁认识接口解决问题理解锁 线程封装 C/C++代码混编引起的问题 此处pthread_create函数要求传入参数为void * func(void * )类型,按理来说ThreadRoutine满足,但是 这是在内类完成封装,所以ThreadRoutine函数实际是两个参数,第一个参数Thread* this不显示 解决方法: 第