最短路算法总结(dijkstra,flyod,bellmanford,spfa)

2024-06-23 11:20

本文主要是介绍最短路算法总结(dijkstra,flyod,bellmanford,spfa),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

总结

d i j k s t r a dijkstra dijkstra h e a p − d i j k s t r a heap-dijkstra heapdijkstra b e l l m a n f o r d bellmanford bellmanford s p f a spfa spfa f l o y d floyd floyd
最短路类型单源单源单源单源全源
数据维护 e [ u ] d [ u ] v i s [ u ] e[u] d[u] vis[u] e[u]d[u]vis[u] e [ u ] d [ u ] v i s [ u ] e[u] d[u] vis[u] e[u]d[u]vis[u] 优先队列:距离优先 e [ u ] d [ u e[u] d[u e[u]d[u] e [ u ] d [ u ] v i s [ u ] e[u] d[u] vis[u] e[u]d[u]vis[u] 队列:时间优先 d [ u ] d[u] d[u]
算法贪心 松弛 出圈贪心 松弛 入队 出队所有边松弛出队点的出边松弛动态规划(插点法)
负边权不能不能
判负环不能不能
时间复杂度 O ( n 2 ) O(n^2) O(n2) O ( ( m + n ) l o g m O((m+n)logm O((m+n)logm) O ( n m O(nm O(nm) O ( k m n m ) O(km~nm) O(km nm) O ( n 3 ) O(n^3) O(n3)

下附代码实现

dijkstra

#include<iostream>
#include<vector>
using namespace std;
#define MAX_N 100000
#define inf 9999999
int n,m,s;
struct edge{int v,w;
};
vector<edge>e[MAX_N+5];
int d[MAX_N+5];
int vis[MAX_N+5];
void dijkstra()
{for(int i=0;i<=n;i++)d[i]=inf;d[s]=0;for(int i=1;i<n;i++){int u=0;for(int j=1;j<=n;j++)if(!vis[j]&&d[u]>d[j])u=j;vis[u]=1;for(auto ed:e[u]){int v=ed.v,w=ed.w;if(d[v]>d[u]+w)d[v]=d[u]+w;}}
}
int main()
{cin>>n>>m>>s;for(int i=1,a,b,c;i<=m;i++){scanf("%d %d %d",&a,&b,&c);e[a].push_back({b,c});}dijkstra();for(int i=1;i<=n;i++)cout<<d[i]<<" ";return 0;
}

heap_dijkstra

基于优先队列优化的dijkstra

#include<iostream>
#include<queue>
#include<vector>
using namespace std;
#define MAX_N 100000
#define inf 0x7f7f7f7f
int n,m,s;
struct edge{int v,w;
};
vector<edge>e[MAX_N+5];
int d[MAX_N+5];
int vis[MAX_N+5];
priority_queue<pair<int,int>>p;
void dijkstra()
{p.push({0,s});for(int i=0;i<=n;i++)d[i]=inf;d[s]=0;while(p.size()){pair<int,int>t=p.top();p.pop();int u=t.second;if(vis[u])continue;vis[u]=1;for(auto ed:e[u]){int v=ed.v,w=ed.w;if(d[v]>d[u]+w){d[v]=d[u]+w;p.push({-d[v],v});}}}
}
int main()
{cin>>n>>m>>s;for(int i=1,a,b,c;i<=m;i++){scanf("%d %d %d",&a,&b,&c);e[a].push_back({b,c});}dijkstra();for(int i=1;i<=n;i++)cout<<d[i]<<" ";return 0;
}

floyd

#include<iostream>
#include<vector>
using namespace std;
#define MAX_N 100
#define inf 9999999
int n,m;
struct edge{int v,w;
};
int d[MAX_N+5][MAX_N+5];
int p[MAX_N+5][MAX_N+5];
void floyd()
{for(int k=1;k<=n;k++){for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(d[i][j]>d[i][k]+d[k][j]){d[i][j]=d[i][k]+d[k][j];p[i][j]=k;} }}}return ;
}
void path(int i,int j)
{if(!p[i][j])return ;int k=p[i][j];path(i,k);printf("%d",k);path(k,j);return ;
}
int main()
{cin>>n>>m;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++)d[i][j]=inf;d[i][i]=0;}for(int i=1,a,b,c;i<=m;i++){scanf("%d %d %d",&a,&b,&c);d[a][b]=c;}floyd();for(int i=1;i<=n;i++){for(int j=1;j<=n;j++)cout<<d[i][j]<<" ";cout<<endl;}int x,y;cin>>x>>y;cout<<x;path(x,y);cout<<y;return 0;
}

bellmanford

#include<iostream>
#include<vector>
using namespace std;
#define MAX_N 1000000
#define inf 0x7f7f7f7f
struct edge{int v,w;
};
vector<edge>e[MAX_N+5];
int d[MAX_N+5];
int n,m,s;
bool bellmanford()
{bool flag=0;for(int i=0;i<=n;i++)d[i]=inf;d[s]=0;for(int i=1;i<=n;i++){flag=0;for(int u=1;u<=n;u++){if(d[u]==inf)continue;for(auto ed:e[u]){int v=ed.v,w=ed.w;if(d[v]>d[u]+w){d[v]=d[u]+w;flag=1;}}}if(!flag)break;}return flag;
}
int main()
{cin>>n>>m>>s;for(int i=1,a,b,c;i<=m;i++){scanf("%d %d %d",&a,&b,&c);e[a].push_back({b,c});}cout<<bellmanford()<<endl;for(int i=1;i<=n;i++)cout<<d[i]<<" "; return 0;
}

spfa

基于队列优化的bellmanford

#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define MAX_N 1000000
#define inf 0x7f7f7f7f
struct edge{int v,w;
};
vector<edge>e[MAX_N+5];
int d[MAX_N+5];
int vis[MAX_N+5];
int cnt[MAX_N+5];
int n,m,s;
queue<int>q;
bool spfa()
{bool flag=0;for(int i=0;i<=n;i++)d[i]=inf;d[s]=0;q.push(s);while(!q.empty()){int u=q.front();vis[u]=0;q.pop();for(auto ed:e[u]){int v=ed.v,w=ed.w;if(d[v]>d[u]+w){d[v]=d[u]+w;cnt[v]=cnt[u]+1;if(cnt[v]>=n)return 0;if(!vis[v])q.push(v),vis[v]=1;}}}return 1;
}
int main()
{cin>>n>>m>>s;for(int i=1,a,b,c;i<=m;i++){scanf("%d %d %d",&a,&b,&c);e[a].push_back({b,c});}cout<<bellmanford()<<endl;for(int i=1;i<=n;i++)cout<<d[i]<<" "; return 0;
}

这篇关于最短路算法总结(dijkstra,flyod,bellmanford,spfa)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087010

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem