YOLOv10目标检测算法的使用

2024-06-23 10:36

本文主要是介绍YOLOv10目标检测算法的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、环境安装

1、创建虚拟环境

2、安装依赖

二、数据集准备

1、预训练权重

2、数据划分

3、建立数据集的yaml文件

 三、训练

1、终端运行指令

2、建立一个 python 文件运行

四、验证

1、终端运行指令

2、建立一个 python 文件运行

五、模型推理

1、单张图片推理

2、视频推理

六、导出报告

七、报错处理

1、提示数据集.yaml文件错误:RuntimeError: Dataset 'datasets/fire.yaml' error

八、附录

1、xml转txt脚本


一、环境安装

1、创建虚拟环境

conda create -n yolov10 python=3.8# 激活yolov9 env
conda activate yolov10

2、安装依赖

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

注意:如果需要终端运行命令,即yolo xxx,还需要运行下面命令进行额外安装:

pip install -e .

二、数据集准备

1、预训练权重

预训练权重下载:

import os
import urllib.request# Create a directory for the weights in the current working directory
weights_dir = os.path.join(os.getcwd(), "weights")
os.makedirs(weights_dir, exist_ok=True)# URLs of the weight files
urls = ["https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10n.pt","https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt","https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10m.pt","https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10b.pt","https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10x.pt","https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10l.pt"
]# Download each file
for url in urls:file_name = os.path.join(weights_dir, os.path.basename(url))urllib.request.urlretrieve(url, file_name)print(f"Downloaded {file_name}")

2、数据划分

 将需要训练的数据集,放入项目目录下,格式如下(目前的图片和标签是这个样子的):

Moon_Cake├─images└─all└─labels└─all

现在通过脚本将数据集进行划分,格式如下:

├── yolov10_dataset└── train└── images (folder including all training images)└── labels (folder including all training labels)└── test└── images (folder including all testing images)└── labels (folder including all testing labels)└── valid└── images (folder including all testing images)└── labels (folder including all testing labels)

划分代码:

import os
import random
import shutildef copy_files(src_dir, dst_dir, filenames, extension):os.makedirs(dst_dir, exist_ok=True)missing_files = 0for filename in filenames:src_path = os.path.join(src_dir, filename + extension)dst_path = os.path.join(dst_dir, filename + extension)# Check if the file exists before copyingif os.path.exists(src_path):shutil.copy(src_path, dst_path)else:print(f"Warning: File not found for {filename}")missing_files += 1return missing_filesdef split_and_copy_dataset(image_dir, label_dir, output_dir, train_ratio=0.7, valid_ratio=0.15, test_ratio=0.15):# 获取所有图像文件的文件名(不包括文件扩展名)image_filenames = [os.path.splitext(f)[0] for f in os.listdir(image_dir)]# 随机打乱文件名列表random.shuffle(image_filenames)# 计算训练集、验证集和测试集的数量total_count = len(image_filenames)train_count = int(total_count * train_ratio)valid_count = int(total_count * valid_ratio)test_count = total_count - train_count - valid_count# 定义输出文件夹路径train_image_dir = os.path.join(output_dir, 'train', 'images')train_label_dir = os.path.join(output_dir, 'train', 'labels')valid_image_dir = os.path.join(output_dir, 'valid', 'images')valid_label_dir = os.path.join(output_dir, 'valid', 'labels')test_image_dir = os.path.join(output_dir, 'test', 'images')test_label_dir = os.path.join(output_dir, 'test', 'labels')# 复制图像和标签文件到对应的文件夹train_missing_files = copy_files(image_dir, train_image_dir, image_filenames[:train_count], '.jpg')train_missing_files += copy_files(label_dir, train_label_dir, image_filenames[:train_count], '.txt')valid_missing_files = copy_files(image_dir, valid_image_dir, image_filenames[train_count:train_count + valid_count], '.jpg')valid_missing_files += copy_files(label_dir, valid_label_dir, image_filenames[train_count:train_count + valid_count], '.txt')test_missing_files = copy_files(image_dir, test_image_dir, image_filenames[train_count + valid_count:], '.jpg')test_missing_files += copy_files(label_dir, test_label_dir, image_filenames[train_count + valid_count:], '.txt')# Print the count of each datasetprint(f"Train dataset count: {train_count}, Missing files: {train_missing_files}")print(f"Validation dataset count: {valid_count}, Missing files: {valid_missing_files}")print(f"Test dataset count: {test_count}, Missing files: {test_missing_files}")# 使用例子
image_dir = 'datasets/coco128/images/train2017'
label_dir = 'datasets/coco128/labels/train2017'
output_dir = './my_dataset'split_and_copy_dataset(image_dir, label_dir, output_dir)

划分后的样子:

3、建立数据集的yaml文件

自己建立的,写成绝对路径,防止出错:

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /hy-tmp/yolov10/datasets/dataset_split
train: train # train images
val: val # val images
test: test # test images (optional) # number of classes
nc: 2# Classes,这个类别也可以这样写:names: [ 'sleep' , 'phone' ]
names:0: sleep1: phone

下面的自带的:

path: ../datasets/coco128  # dataset root dir
train: images/train2017  # train images (relative to 'path') 128 images
val: images/train2017  # val images (relative to 'path') 128 images
test:  # test images (optional)# Classes
names:0: person1: bicycle2: car''''''79: toothbrush

 三、训练

YOLov10 提供两种训练方式,终端运行指令和新建一个 python 文件运行

1、终端运行指令

通过命令直接进行训练在其中指定参数,命令如下(注意:如果是Windows系统,Workers最好设置成0,否则容易报线程的错误):

# 从YAML构建一个新模型,从头开始训练
yolo task=detect mode=train model=yolov10n.yaml data=替换你数据集的yaml文件地址 batch=16 epochs=100 imgsz=640 workers=0 device=0# 从预训练的*.pt模型开始训练
yolo task=detect mode=train model=yolov10n.pt data=替换你数据集的yaml文件地址 batch=16 epochs=100 imgsz=640 workers=0 device=0# 从YAML中构建一个新模型,将预训练的权重转移到它并开始训练
yolo task=detect mode=train model=yolov10n.yaml pretrained=yolov10n.pt data=替换你数据集的yaml文件地址 batch=16 epochs=100 imgsz=640 workers=0 device=0

通过指定cfg直接进行训练,配置好ultralytics/cfg/default.yaml这个文件之后,可以直接执行这个文件进行训练,这样就不用在命令行输入其它的参数了:

yolo cfg=ultralytics/cfg/default.yaml

2、建立一个 python 文件运行

有些教程写的是,需要导入YOLOv10模块,而不是YOLO模块(参考),但是实际上也没啥问题(推荐这个,注意修改yolov10n.yaml模型配置文件的类别数)。

from ultralytics import YOLO# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10n.yaml"
#数据集配置文件
data_yaml_path = 'datasets/fire.yaml'
#预训练模型
pre_model_name = 'yolov10n.pt'if __name__ == '__main__':#加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=20,batch=4,name='train_v10')

而应对指令命令的三种形式如下:

from ultralytics import YOLOv10# Load a model # 三选一
model = YOLOv10('yolov10n.yaml')  # build a new model from YAML
model = YOLOv10('yolov10n.pt')  # load a pretrained model (recommended for training)
model = YOLOv10('yolov10n.yaml').load('yolov10n.pt')  # build from YAML and transfer weights# Train the model
model.train(data='coco128.yaml', epochs=100, imgsz=640)

可以通过tensorboard查看实时训练效果:

tensorboard --logdir runs\detect\train2

四、验证

1、终端运行指令

yolo task=detect mode=val model=yolov10n.pt
# mode=val 就是看验证集
yolo task=detect mode=val split=val model=runs/detect/train2/weights/best.pt  data=ultralytics/datasets/MoonCake.yaml # 替换你数据集的yaml文件地址
# mode=test 就是看测试集
yolo task=detect mode=val split=test model=runs/detect/train2/weights/best.pt  data=ultraly

这篇关于YOLOv10目标检测算法的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1086919

相关文章

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java