基于matlab的不同边缘检测算子的边缘检测

2024-06-23 08:20

本文主要是介绍基于matlab的不同边缘检测算子的边缘检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 原理

1.1 边缘检测概述

边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点。这些变化通常反映了图像属性的重要事件和变化,如深度不连续、表面方向不连续、物质属性变化和场景照明变化等。边缘检测在特征提取中起着关键作用,因为它能够大幅度地减少数据量,并剔除不相关的信息,同时保留图像重要的结构属性。

1.2 Prewitt算子

Prewitt算子是一种一阶微分算子的边缘检测。它利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

公式表示:
对于数字图像f(x,y),Prewitt算子的定义如下:
G(i) = | [f(i-1,j-1) + f(i-1,j) + f(i-1,j+1)] - [f(i+1,j-1) + f(i+1,j) + f(i+1,j+1)] |
G(j) = | [f(i-1,j+1) + f(i,j+1) + f(i+1,j+1)] - [f(i-1,j-1) + f(i,j-1) + f(i+1,j-1)] |

1.3 Roberts算子

Roberts算子由Lawrence Roberts在1963年提出,基于离散微分的原理,通过计算图像上相邻像素点之间的差异来检测边缘。它使用两个2x2的模板进行卷积操作。

模板表示:
Gx = [[1, 0], [0, -1]]
Gy = [[0, 1], [-1, 0]]

1.4 Sobel算子

Sobel算子是一种一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

公式表示:
Sx = (Z1 + 2Z2 + Z3) - (Z7 + 2Z8 + Z9)
Sy = (Z1 + 2Z4 + Z7) - (Z3 + 2Z6 + Z9)

1.5 LoG(Laplacian of Gaussian)算子

LoG算子结合了高斯平滑和拉普拉斯算子。首先使用高斯滤波器对图像进行平滑处理,然后利用拉普拉斯算子进行边缘检测。这样可以减少噪声对边缘检测的影响。

高斯平滑公式(见参考文章7的高斯滤波公式)
LoG算子公式(见参考文章6的LoG函数表达式)

1.6 Canny边缘检测算法

Canny边缘检测算法是一个多级检测算法,结合了高斯滤波、梯度的强度和方向、双阈值处理和边缘跟踪等技术。其目标是找到一个最优的边缘检测算法。

由于Canny边缘检测算法涉及多个步骤和复杂的计算,其完整的公式和算法流程较为复杂,无法在此处直接给出。但基本思想是利用高斯滤波平滑图像,计算梯度的强度和方向,然后通过双阈值处理和边缘跟踪来确定边缘。

以上即为边缘检测及其常见算子的简要介绍和原理公式。在实际应用中,可以根据具体需求和图像特性选择合适的边缘检测算法。

2 代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%% 图像预处理-高斯滤波与图像去噪 
I = imread('test.jpeg');  
if size(I, 3) == 3  % 如果是彩色图像,转换为灰度图像  I = rgb2gray(I);  
end  
I = im2double(I); % 将图像转换为双精度,范围在[0, 1]    
% 对图像进行高斯滤波  
h = fspecial('gaussian', [5 5], 1); % 创建一个5x5的高斯滤波器,标准差为1  
I_gaussian = imfilter(I, h);    
% 绘制原始图像和原始直方图  
figure;  
subplot(3, 2, 1),imshow(I);  
title('原始图像');   
subplot(3, 2, 2),imhist(I);  
title('原始直方图');  
%  绘制高斯滤波后的图像和对应的直方图  
subplot(3, 2, 3),imshow(I_gaussian);  
title('高斯滤波后的图像');  
subplot(3, 2, 4),imhist(I_gaussian);  
title('高斯滤波后的直方图');   
% 去噪使用中值滤波  
I_denoised = medfilt2(I); % 使用中值滤波进行去噪    
% 绘制去噪后的图像和对应的直方图  
subplot(3, 2, 5),imshow(I_denoised);  
title('去噪后的图像');  
subplot(3, 2, 6),imhist(I_denoised);  
title('去噪后的直方图');  
%% %% 边缘检测
% 读取图像  
I6 = imread('test.jpeg'); 
I6 = rgb2gray(I6); % 转换为灰度图像   
% 初始化figure和subplot  
figure;  
% 绘制原始图像作为对比  
subplot(3, 2, 1);  
imshow(I6);  
title('原始图像');    
% Prewitt边缘检测  
BW_prewitt = edge(I6, 'prewitt');  
subplot(3, 2, 2);  
imshow(BW_prewitt);  
title('Prewitt 边缘检测');    
% Roberts边缘检测  
BW_roberts = edge(I6, 'roberts');  
subplot(3, 2, 3);  
imshow(BW_roberts);  
title('Roberts 边缘检测');  
% Sobel边缘检测  
BW_sobel = edge(I6, 'sobel');  
subplot(3, 2, 4);  
imshow(BW_sobel);  
title('Sobel 边缘检测');   
% LoG边缘检测  
BW_log = edge(I6, 'log');  
subplot(3, 2, 5);  
imshow(BW_log);  
title('LoG 边缘检测');   
% Canny边缘检测(需要设置阈值)  
BW_canny = edge(I6, 'canny', [0.4, 0.7]); % 这里设置了高低两个阈值  
subplot(3, 2, 6);  
imshow(BW_canny);  
title('Canny 边缘检测');  
% 添加标签和标题  
set(gcf, 'Name', '边缘检测算子比较');
%% 图像预处理-灰度化与图像反白
I1 = imread('test.jpeg');  
figure;
subplot(2,2,1);%用subplot建立多个子图
imshow(I1);%用imshow显示图像I
title('原始彩色图像');  
J=rgb2gray(I1);%将彩色图像工转换为灰度图像J
subplot(2,2,2);imshow(J);% 用imshow显示图像J
title('灰度图像');  
subplot(2,2,3);imhist(J);% 计算和显示灰度图像J的灰度直方图
title('灰度直方图');  
Ave = mean2(J);%用mean2函数求图像J的均值
SD = std2(double(J));%用std2函数求图像J的均值
s= size(J);%图像大小为s(1)×s(2)
all_white = 255*ones(s(1),s(2));%设置全部为白色灰度255
all_white_uint8=uint8(all_white);%将double类型矩阵转化为uint8类型矩阵
K= imsubtract(all_white_uint8,J);%图像相减得反白图像K
subplot(2,2,4);imshow(K);%用imshow显示图像K
title('反白图像');  %% 线性变换进行图像增强
I2= imread('test.jpeg');
J2=rgb2gray(I2);
figure;
subplot(2,2,1), imshow(J2) ;
title('原始图像');  
subplot(2,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图');  
K = imadjust(J2,[0.4 0.6],[]);%使用imadjust函数进行灰度的线性变换
subplot(2,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(2,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');%% 伽马变换进行图像增强
figure;
subplot(3,2,1), imshow(J2) ;
title('原始图像');  
subplot(3,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图'); 
gamma = 0.5;
I_gamma = imadjust(J2, [], [], gamma);  
subplot(3,2,3),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(3,2,4),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
%% % 对数变换进行图像增强  
c = 0.5; % 控制参数,用于避免log(0)  
I_log = c * log(1 + double(J2)) / log(256);  
I_log = im2uint8(I_log);    
subplot(3,2,5);  
imshow(I_log);  
title('对数变换后的图像');
subplot(3,2,6);  
imhist(I_log);
title('对数变换后的灰度直方图');
%% 
figure('Position',[50 50 800 600])
subplot(4,2,1), imshow(J2);
title('原始图像');  
subplot(4,2,2), imhist(J2);
title('原始灰度直方图'); 
subplot(4,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(4,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');
subplot(4,2,5),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(4,2,6),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
subplot(4,2,7),imshow(I_log);  
title('对数变换后的图像');
subplot(4,2,8),imhist(I_log);
title('对数变换后的灰度直方图');
%% 直方图均衡化进行图像增强
I3 = imread('test.jpeg'); % 读取图像  
I_gray = rgb2gray(I3); % 转换为灰度图像    
% 直方图均衡化  
I_eq = histeq(I_gray);    
% 显示原始图像和增强后的图像  
figure;
subplot(2, 2, 1),imshow(I_gray);
title('原始图像'); 
subplot(2, 2, 2);  
imhist(I_gray),title('原始灰度直方图'); 
subplot(2, 2, 3),imshow(I_eq);  
title('直方图均衡化后的图像');
subplot(2, 2, 4),imhist(I_eq);  
title('直方图均衡化后的灰度直方图');

3 运行结果

这篇关于基于matlab的不同边缘检测算子的边缘检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086625

相关文章

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别

转发来源:https://swift.ctolib.com/ooooverflow-chinese-ocr.html chinese-ocr 基于CTPN(tensorflow)+CRNN(pytorch)+CTC的不定长文本检测和识别 环境部署 sh setup.sh 使用环境: python 3.6 + tensorflow 1.10 +pytorch 0.4.1 注:CPU环境

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

基于深度学习的轮廓检测

基于深度学习的轮廓检测 轮廓检测是计算机视觉中的一项关键任务,旨在识别图像中物体的边界或轮廓。传统的轮廓检测方法如Canny边缘检测和Sobel算子依赖于梯度计算和阈值分割。而基于深度学习的方法通过训练神经网络来自动学习图像中的轮廓特征,能够在复杂背景和噪声条件下实现更精确和鲁棒的检测效果。 深度学习在轮廓检测中的优势 自动特征提取:深度学习模型能够自动从数据中学习多层次的特征表示,而不需要

自动驾驶---Perception之Lidar点云3D检测

1 背景         Lidar点云技术的出现是基于摄影测量技术的发展、计算机及高新技术的推动以及全球定位系统和惯性导航系统的发展,使得通过激光束获取高精度的三维数据成为可能。随着技术的不断进步和应用领域的拓展,Lidar点云技术将在测绘、遥感、环境监测、机器人等领域发挥越来越重要的作用。         目前全球范围内纯视觉方案的车企主要包括特斯拉和集越,在达到同等性能的前提下,纯视觉方

MATLAB算法实战应用案例精讲-【数模应用】三因素方差

目录 算法原理 SPSSAU 三因素方差案例 1、背景 2、理论 3、操作 4、SPSSAU输出结果 5、文字分析 6、剖析 疑难解惑 均方平方和类型? 事后多重比较的类型选择说明? 事后多重比较与‘单独进行事后多重比较’结果不一致? 简单效应是指什么? 边际估计均值EMMEANS是什么? 简单简单效应? 关于方差分析时的效应量? SPSSAU-案例 一、案例

SpringBoot中如何监听两个不同源的RabbitMQ消息队列

spring-boot如何配置监听两个不同的RabbitMQ 由于前段时间在公司开发过程中碰到了一个问题,需要同时监听两个不同的rabbitMq,但是之前没有同时监听两个RabbitMq的情况,因此在同事的帮助下,成功实现了监听多个MQ。下面我给大家一步一步讲解下,也为自己做个笔记; 详细步骤: 1. application.properties 文件配置: u.rabbitmq.ad

代码随想录算法训练营第三十九天|62.不同路径 63. 不同路径 II 343.整数拆分 96.不同的二叉搜索树

LeetCode 62.不同路径 题目链接:62.不同路径 踩坑:二维的vector数组需要初始化,否则会报错访问空指针 思路: 确定动态数组的含义:dp[i][j]:到达(i,j)有多少条路经递推公式:dp[i][j] = dp[i-1][j] + dp[i][j-1]初始化动态数组:dp[0][0] = 1遍历顺序:从左到右,从上到下 代码: class Solution {pu

YOLOv9摄像头或视频实时检测

1、下载yolov9的项目 地址:YOLOv9 2、使用下面代码进行检测 import torchimport cv2from models.experimental import attempt_loadfrom utils.general import non_max_suppression, scale_boxesfrom utils.plots import plot_o