基于ACO蚁群优化的城市最佳出行路径规划matlab仿真

2024-06-23 07:28

本文主要是介绍基于ACO蚁群优化的城市最佳出行路径规划matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

      基于ACO蚁群优化的城市最佳出行路径规划matlab仿真,可以修改城市个数,输出路径规划结果和ACO收敛曲线。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

点数较少时

点数规模中等时

点数较多时

(完整程序运行后无水印)

3.核心程序

...............................................................................% 更新最短路径及其信息素[Vmin,Imin] = min(Rdist);Ant_min(t)  = Vmin;Lrout(t,:)  = Lrt(Imin,:);if Ant_min(t)<GminGmin               = Ant_min(t);route(1,1:Ncity+1) = Lrout(t,:);end% 强化信息素更新for f=1:5[Rdist_min,Imin]=min(Rdist);for c=1:Ncitydtw2(Lrt(Imin,c),Lrt(Imin,c+1)) = dtw2(Lrt(Imin,c),Lrt(Imin,c+1))+e*(Q/Gmin);end Rdist(Imin)=1e4;end% 信息素更新for i=1:Ncityfor j=1:Ncitytaws(i,j) = (1-efact)*taws(i,j)+dtw1(i,j)+dtw2(i,j);endendtaws;% 绘制当前迭代的路径for i=1:Ncity+1x1(i) = x(Lrout(t,i));y1(i) = y(Lrout(t,i));end
end% 绘制全局最短路径跟踪图
figure
plot(1:t,Ant_min)
xlabel('迭代次数')
ylabel('优化收敛值')
grid on  for i=1:Ncity+1x1(i)=x(route(1,i));y1(i)=y(route(1,i));
endfigure
plot(x(1),y(1),'*k')
hold on
plot(x1,y1,'b')
hold on
plot(x,y,'ro')
title('找到的最佳路径')
grid on
62

4.本算法原理

        蚁群优化算法(Ant Colony Optimization, ACO)是一种启发式优化方法,灵感来源于蚂蚁在寻找食物过程中留下信息素并据此选择最短路径的行为。将其应用于城市最佳出行路径规划问题时,能够模拟蚂蚁探索不同路径并逐渐发现较优路径的过程,从而找到从起点到终点的最佳出行路线。在城市路径规划的ACO框架中,主要元素包括:

  • 城市节点:代表地图上的各个地点,如路口、地标等;
  • :连接两节点之间的路径,附带旅行成本(如距离、时间或费用);
  • 蚂蚁:模拟个体,每只蚂蚁从起点出发,按照一定规则探索路径至终点;
  • 信息素:沿路径释放,其浓度影响后续蚂蚁的选择,随时间蒸发。

ACO算法步骤:

       整个ACO算法的数学抽象可以总结为一个迭代优化过程,目标函数(最小化路径总长度)通过群体智能和信息素机制隐式求解。其中,信息素浓度的动态平衡体现了记忆与遗忘的自然法则,而启发式信息与信息素的联合决策机制,则巧妙地融合了全局探索与局部利用的策略,使得算法在复杂网络中具有较强的搜索能力和适应性。

5.完整程序

VVV

这篇关于基于ACO蚁群优化的城市最佳出行路径规划matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086508

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis