yolov8训练初体验

2024-06-23 05:52
文章标签 训练 yolov8 初体验

本文主要是介绍yolov8训练初体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在爬一些数据,有些网址的验证码比较难搞,于是使用yolov8来解决。

一、数据打标签并转为txt

使用的软件为X-AnyLabeling。内置各种模型,方便打标。

打标完成后由于是json格式,所以我们使用python转换即可


import json
import os#矩形框时def labelme_to_yolo(label_me_json_file, cls2id_dict):label_me_json = json.load(open(label_me_json_file, mode='r', encoding='UTF-8'))shapes = label_me_json['shapes']img_width, img_height = label_me_json['imageWidth'], label_me_json['imageHeight']img_path = label_me_json['imagePath']img_data = label_me_json['imageData'] if 'imageData' in label_me_json else ''labels = []for s in shapes:s_type = s['shape_type']s_type = s_type.lower()if s_type == 'rectangle':pts = s['points']x1, y1 = pts[0]  # left cornerx2, y2 = pts[1]  # right cornerx = (x1 + x2) / 2 / img_widthy = (y1 + y2) / 2 / img_heightw = abs(x2 - x1) / img_widthh = abs(y2 - y1) / img_heightcid = cls2id_dict[s['label']]labels.append(f'{cid} {x} {y} {w} {h}')return labelsdef write_label2txt(save_txt_path, label_list):f = open(save_txt_path, "w", encoding="UTF-8")for label in label_list:temp_list = label.split(" ")f.write(temp_list[0])f.write(" ")f.write(temp_list[1])f.write(" ")f.write(temp_list[2])f.write(" ")f.write(temp_list[3])f.write(" ")f.write(temp_list[4])f.write("\n")if __name__ == '__main__':# 原始图片文件夹路径img_dir = r"D:\pic\pic"# 原始JSON标签文件夹路径json_dir = r"D:\pic\label_json"# 生成保存TXT文件夹路径save_dir = r"D:\pic\label_txt"# 类别和序号的映射字典cls2id_dict = {"building1": "0"}if not os.path.exists(save_dir):os.makedirs(save_dir)for json_name in os.listdir(json_dir):json_path = os.path.join(json_dir, json_name)txt_name = json_name.split(".")[0] + ".txt"save_txt_path = os.path.join(save_dir, txt_name)labels = labelme_to_yolo(json_path, cls2id_dict)write_label2txt(save_txt_path, labels)
# 处理 X-Anylabeling 多边形矩阵的标注 json 转化 txt,提取点
import json
import osname2id = { '球体'  : 0,'立方体': 1,'圆锥体': 2,'圆柱体': 3,'多面体': 4}  # 修改你的类别并且赋与 indexdef decode_json(json_floder_path, txt_outer_path, json_name):txt_name = os.path.join(txt_outer_path,json_name[:-5]) + '.txt'with open(txt_name, 'a') as f:json_path = os.path.join(json_floder_path, json_name)data = json.load(open(json_path, 'r', encoding='utf8', errors='ignore'))img_w = data['imageWidth']img_h = data['imageHeight']isshape_type = data['shapes'][0]['shape_type']print(isshape_type)dw = 1. / (img_w)dh = 1. / (img_h)for i in data['shapes']:label_name = i['label']if (i['shape_type'] == 'polygon'):point = []for lk in range(len(i['points'])):x = float(i['points'][lk][0])y = float(i['points'][lk][1])point_x = x * dwpoint_y = y * dhpoint.append(point_x)point.append(point_y)try:formatted_line = f"{name2id[label_name]} {' '.join(str(a) for a in point)}\n"f.write(formatted_line)except KeyError:print(f"Warning: Label name '{label_name}' not found in name2id mapping.")f.close()if __name__ == "__main__":json_floder_path = r'D:\pic\label_json'  # 存放 json 的文件夹的绝对路径txt_outer_path = r'D:\pic\label_txt'  # 存放 txt 的文件夹绝对路径json_names = os.listdir(json_floder_path)flagcount = 0for json_name in json_names:decode_json(json_floder_path, txt_outer_path, json_name)flagcount += 1print('-----------转化完毕------------')

二、使用yolov8训练

2.1 将图片和标签分别放在datasets目录下

2.2创建yaml文件

trian为训练的图片

val为预测的图片


train: D:\\software\\PyCharm\\workspace\\ultralytics\\datasest\\mypic\\images 
val: D:\\software\\PyCharm\\workspace\\SomeTry\\yanzhengma\\val names:0: '球体'1: '立方体'2: '圆锥体'3: '圆柱体'4: '多面体'

2.3 创建训练代码

YOLOv8文档

from ultralytics import YOLOmodel = YOLO('yolov8n.pt')
model.train(data='mypic.yaml', epochs=100, imgsz=640, batch=8)#用训练后的模型进行预测
yolo predict model=runs/detect/train/weights/best.pt source=D:\\software\\PyCharm\\workspace\\SomeTry\\yanzhengma\\val\\1719060455810geetest_image.jpg

训练结果

这篇关于yolov8训练初体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086309

相关文章

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

神经网络训练不起来怎么办(零)| General Guidance

摘要:模型性能不理想时,如何判断 Model Bias, Optimization, Overfitting 等问题,并以此着手优化模型。在这个分析过程中,我们可以对Function Set,模型弹性有直观的理解。关键词:模型性能,Model Bias, Optimization, Overfitting。 零,领域背景 如果我们的模型表现较差,那么我们往往需要根据 Training l

如何创建训练数据集

在 HuggingFace 上创建数据集非常方便,创建完成之后,通过 API 可以方便的下载并使用数据集,在 Google Colab 上进行模型调优,下载数据集速度非常快,本文通过 Dataset 库创建一个简单的训练数据集。 首先安装数据集依赖 HuggingFace datasetshuggingface_hub 创建数据集 替换为自己的 HuggingFace API key

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别