三次插值曲线--插值技术

2024-06-23 05:04
文章标签 插值 曲线 三次 技术

本文主要是介绍三次插值曲线--插值技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三次插值曲线

1.1.三次样条曲线

三次样条曲线的基本思想是,在给定的一系列点(称为控制点或数据点)之间,通过一系列三次多项式曲线段来拟合这些点,使得整个曲线既平滑又准确地通过所有控制点。

1.1.1.数学定义

给定一组点 ( P_0, P_1, …, P_n ),其中 ( P_i = (x_i, y_i) ),( x_0 < x_1 < … < x_n )。三次样条曲线由以下性质定义:

1.局部控制:每个曲线段 ( S_i(x) ) 在区间 ( [x_i, x_{i+1}] ) 上是三次多项式。

2.连续性:所有曲线段在连接点处具有相同的一阶导数和二阶导数,即:
( S i ( x i ) = S i + 1 ( x i ) ) ; ( S i ′ ( x i ) = S i + 1 ′ ( x i ) ) ; ( S i ′ ′ ( x i ) = S i + 1 ′ ′ ( x i ) ) ; ( S_i(x_i) = S_{i+1}(x_i) );\\ ( S'_i(x_i) = S'_{i+1}(x_i) );\\ ( S''_i(x_i) = S''_{i+1}(x_i) ); (Si(xi)=Si+1(xi));(Si(xi)=Si+1(xi));(Si′′(xi)=Si+1′′(xi));
3.边界条件:通常有两种边界条件,自然边界(Natural)和固定边界(Clamped)。自然边界指在曲线两端,二阶导数为零,即 ( S’‘_0(x_0) = S’'_n(x_n) = 0 )。固定边界则需要指定曲线两端的斜率。

1.1.2.插值公式

对于区间 ( [x_i, x_{i+1}] ) 上的曲线段 ( S_i(x) ),其一般形式为:
y = S i ( x ) = a i + b i ( x − x i ) + c i ( x − x i ) 2 + d i ( x − x i ) 3 y=S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 y=Si(x)=ai+bi(xxi)+ci(xxi)2+di(xxi)3
其中,( a_i, b_i, c_i, d_i ) 是系数,需要通过以下条件确定:

1.对每个S_i(x),其必过型值点P_i, P_{i+1}。

2.对排除首个,末个型值点的每个中间型值点,这些型值点分别位于两个分段函数上。

两个分段函数在此类型值点上一阶导数,二阶导数连续。

3.边界条件。如限定P_0,P_n处二阶导数为0,或指定P__0,P_n处一阶导数。

通过上述三个条件,我们可以唯一确定每一段S_i(x)方程的系数 a_i, b_i, c_i, d_i 。

1.1.3.实例分析

假设现有:
1. P 0 , . . . , P n − 1 共 n 个二维点。对 P i 其坐标为 ( x i , y i ) 。满足 x 0 < . . . < x n − 1 。 2. 给定 P 0 处一阶导数 y 0 ′ ,给定 P n − 1 处一阶导数 y n − 1 ′ 。 1.P_0,...,P_{n-1}共n个二维点。对P_{i}其坐标为(x_{i}, y_{i})。满足x_{0}<...<x_{n-1}。\\ 2.给定P_{0}处一阶导数y'_{0},给定P_{n-1}处一阶导数y'_{n-1}。 1.P0,...,Pn1n个二维点。对Pi其坐标为(xi,yi)。满足x0<...<xn12.给定P0处一阶导数y0,给定Pn1处一阶导数yn1
要求依据以上信息给出从
P 0 到 P n − 1 的共 n − 1 段三次样条曲线的曲线方程。 P_0到P_{n-1}的共n-1段三次样条曲线的曲线方程。 P0Pn1的共n1段三次样条曲线的曲线方程。
分析:
对第 i 段三次样条函数而言,其形式必然为: y = s i ( x ) = a i + b i ( x − x i ) + c i ( x − x i ) 2 + d i ( x − x i ) 3 x i < = x < x i + 1 ; 我们只需分别求出 a i , b i , c i , d i 即可。 对第i段三次样条函数而言,其形式必然为:\\ y =s_{i}(x)= a_{i}+b_{i}(x-x_{i})+c_{i}(x-x_{i})^2+d_{i}(x-x_{i})^3 x_{i}<=x<x_{i+1};\\ 我们只需分别求出a_{i},b_{i},c_{i},d_{i}即可。 对第i段三次样条函数而言,其形式必然为:y=si(x)=ai+bi(xxi)+ci(xxi)2+di(xxi)3xi<=x<xi+1;我们只需分别求出ai,bi,ci,di即可。
1.
通过 y = s i ( x i ) = y i ,可得: a i = y i ; 通过y=s_{i}(x_{i})=y_{i},可得: a_{i} = y_{i}; 通过y=si(xi)=yi,可得:ai=yi;
2.
通过 s i ′ ′ ( x i ) = 2 c i 。我们假设每个 P i 处二阶导数为 M i 。则有: c i = M i / 2 ; 通过s''_{i}(x_{i})=2c_{i}。我们假设每个P_{i}处二阶导数为M_{i}。则有:c_{i}=M_{i}/2; 通过si′′(xi)=2ci。我们假设每个Pi处二阶导数为Mi。则有:ci=Mi/2;
3.
通过 S i ′ ′ ( x i + 1 ) = S i + 1 ′ ′ ( x i + 1 ) 可得: d i = ( M i + 1 − M i ) / [ 6 ( x i + 1 − x i ) ] ; 通过S''_{i}(x_{i+1})=S''_{i+1}(x_{i+1})可得:d_{i}=(M_{i+1}-M_{i})/[6(x_{i+1}-x_{i})]; 通过Si′′(xi+1)=Si+1′′(xi+1)可得:di=(Mi+1Mi)/[6(xi+1xi)];
4.
通过 S i ( x i + 1 ) = S i + 1 ( x i + 1 ) 可得: b i = ( y i + 1 − y i ) / ( x i + 1 − x i ) − ( x i + 1 − x i ) [ M i + 1 / 6 + M i / 3 ] 通过S_{i}(x_{i+1})=S_{i+1}(x_{i+1})可得:\\ b_{i}=(y_{i+1}-y_{i})/(x_{i+1}-x_{i})-(x_{i+1}-x_{i})[M_{i+1}/6+M_{i}/3] 通过Si(xi+1)=Si+1(xi+1)可得:bi=(yi+1yi)/(xi+1xi)(xi+1xi)[Mi+1/6+Mi/3]

通过上述 1 , 2 , 3 , 4 可知,只要知道 M 0 , . . . , M n − 1 便可求出 a i , b i , c i , d i 进而唯一确定每一段的三次样条曲线函数。 下面分析如何求取 M 0 , . . . , M n − 1 。 通过上述1,2,3,4可知,只要知道M_{0},...,M_{n-1}便可求出a_{i},b_{i},c_{i},d_{i}进而唯一确定每一段的三次样条曲线函数。\\ 下面分析如何求取M_{0},...,M_{n-1}。 通过上述1,2,3,4可知,只要知道M0,...,Mn1便可求出ai,bi,ci,di进而唯一确定每一段的三次样条曲线函数。下面分析如何求取M0,...,Mn1
1.
通过 S i ′ ( x i + 1 ) = S i + 1 ′ ( x i + 1 ) ,可得: M i [ ( x i + 1 − x i ) / 6 ] + M i + 1 [ ( x i + 2 − x i ) / 3 ] + M i + 2 [ ( x i + 2 − x i + 1 ) / 6 ] = ( y i + 2 − y i + 1 ) / ( x i + 2 − x i + 1 ) − ( y i + 1 − y i ) / ( x i + 1 − x i ) ; 上述共有 n − 2 个线性方程。为了依赖线性方程组求解 n 个变量,我们还需要两个。 通过S'_{i}(x_{i+1})=S'_{i+1}(x_{i+1}),可得:\\ M_{i}[(x_{i+1}-x_{i})/6]+M_{i+1}[(x_{i+2}-x_{i})/3]+M_{i+2}[(x_{i+2}-x_{i+1})/6]=\\ (y_{i+2}-y_{i+1})/(x_{i+2}-x_{i+1})-(y_{i+1}-y_{i})/(x_{i+1}-x_{i});\\ 上述共有n-2个线性方程。为了依赖线性方程组求解n个变量,我们还需要两个。 通过Si(xi+1)=Si+1(xi+1),可得:Mi[(xi+1xi)/6]+Mi+1[(xi+2xi)/3]+Mi+2[(xi+2xi+1)/6]=(yi+2yi+1)/(xi+2xi+1)(yi+1yi)/(xi+1xi);上述共有n2个线性方程。为了依赖线性方程组求解n个变量,我们还需要两个。
2.
通过 y 0 ′ = S 0 ′ ( x 0 ) ,可得: M 0 [ ( x 1 − x 0 ) / 3 ] + M 1 [ ( x 1 − x 0 ) / 6 ] = ( y 1 − y 0 ) / ( x 1 − x 0 ) ; 通过y'_{0}=S'_{0}(x_{0}),可得:\\ M_{0}[(x_{1}-x_{0})/3]+M_{1}[(x_{1}-x_{0})/6]=(y_{1}-y_{0})/(x_{1}-x_{0}); 通过y0=S0(x0),可得:M0[(x1x0)/3]+M1[(x1x0)/6]=(y1y0)/(x1x0);
3.
通过 y n − 1 ′ = S n − 2 ′ ( x n − 1 ) 可得: M n − 2 [ ( x n − 1 − x n − 2 ) / 6 ] + M n − 1 [ ( x n − 1 − x n − 2 ) / 3 ] = y n − 1 ′ − ( y n − 1 − y n − 2 ) / ( x n − 1 − x n − 2 ) ; 通过y'_{n-1}=S'_{n-2}(x_{n-1})可得:\\ M_{n-2}[(x_{n-1}-x_{n-2})/6]+M_{n-1}[(x_{n-1}-x_{n-2})/3]=\\ y'_{n-1}-(y_{n-1}-y_{n-2})/(x_{n-1}-x_{n-2}); 通过yn1=Sn2(xn1)可得:Mn2[(xn1xn2)/6]+Mn1[(xn1xn2)/3]=yn1(yn1yn2)/(xn1xn2);
这样,我们构建了n的线性等式。这n个线性等式,可以用矩阵形式表示为:
A n , n M n , 1 = D n , 1 ; M n , 1 = A n , n − 1 D n , 1 ; A_{n,n}M_{n,1}=D_{n,1};\\ M_{n,1}=A^{-1}_{n,n}D_{n,1}; An,nMn,1=Dn,1;Mn,1=An,n1Dn,1;
这样,我们通过先求取A的逆矩阵,接着便可求出M。然后依据前述求取系数的方法,便可唯一确定每一段的三次样条曲线方程。

1.2.三次参数曲线

这种曲线通过一系列控制点,使用三次多项式来定义曲线上每个点的位置,使得曲线平滑地通过这些控制点。

1.2.1.基本概念

在三次参数样条曲线中,曲线的每个分量(如二维空间中的x和y,或三维空间中的x、y和z)都是参数t的三次多项式。对于给定的一组控制点( P_i(x_i, y_i, z_i) ),曲线的数学表达式可以写作:
P ( t ) = [ x ( t ) , y ( t ) , z ( t ) ] P(t) = [x(t), y(t), z(t)] P(t)=[x(t),y(t),z(t)]
其中,( x(t) ), ( y(t) ), ( z(t) ) 都是参数t的三次多项式:
x ( t ) = a x t 3 + b x t 2 + c x t + d x ; y ( t ) = a y t 3 + b y t 2 + c y t + d y ; z ( t ) = a z t 3 + b z t 2 + c z t + d z ; 其中 t 的含义为当前点距离分段起始点的距离。 x(t) = a_x t^3 + b_x t^2 + c_x t + d_x; \\ y(t) = a_y t^3 + b_y t^2 + c_y t + d_y;\\ z(t) = a_z t^3 + b_z t^2 + c_z t + d_z;\\ 其中t的含义为当前点距离分段起始点的距离。 x(t)=axt3+bxt2+cxt+dx;y(t)=ayt3+byt2+cyt+dy;z(t)=azt3+bzt2+czt+dz;其中t的含义为当前点距离分段起始点的距离。

1.2.2.边界条件

为了确定这些系数( a ), ( b ), ( c ), ( d ),通常需要一些边界条件。常见的边界条件包括:

1.曲线通过控制点:在每个控制点处,t的值设为0或1,确保曲线通过这些点。

2.平滑性:对每个分段函数而言,在区间内二阶连续可导。不同分段函数在邻接点上一阶导数,二阶导数连续。

1.2.3.实际例子

假设现有:
1. P 0 , . . . , P n − 1 共 n 个点。满足相邻的点不重合。 2. P 0 处各个轴关于弧长一阶导数也是已知的,设为 P 0 ′ . x , P 0 ′ . y , P 0 ′ . z 。 3. P n − 1 处各个轴关于弧长一阶导数也是已知的,设为 P n − 1 ′ . x , P n − 1 ′ . y , P n − 1 ′ . z 。 1.P_{0},...,P_{n-1}共n个点。满足相邻的点不重合。\\ 2.P_{0}处各个轴关于弧长一阶导数也是已知的,设为P'_{0}.x,P'_{0}.y,P'_{0}.z。\\ 3.P_{n-1}处各个轴关于弧长一阶导数也是已知的,设为P'_{n-1}.x,P'_{n-1}.y,P'_{n-1}.z。 1.P0,...,Pn1n个点。满足相邻的点不重合。2.P0处各个轴关于弧长一阶导数也是已知的,设为P0.xP0.yP0.z3.Pn1处各个轴关于弧长一阶导数也是已知的,设为Pn1.xPn1.yPn1.z
要求依据上述条件求取每一段上以弧长为参数的曲线的三次参数方程。

分析:
对第 i 段三次样条函数而言,其形式必然为: 对 x i ( t ) : x i ( t ) = a x i + b x i t + c x i t 2 + d x i t 3 ; 0 < = t < L e n i ; 其中 L e n i 是此段终点到起点的距离。我们只需分别求出 a x i , b x i , c x i , d x i 即可。 对 y i ( t ) : y i ( t ) = a y i + b y i t + c y i t 2 + d y i t 3 ; 0 < = t < L e n i ; 其中 L e n i 是此段终点到起点的距离。我们只需分别求出 a y i , b y i , c y i , d y i 即可。 对 z i ( t ) : z i ( t ) = a z i + b z i t + c z i t 2 + d z i t 3 ; 0 < = t < L e n i ; 其中 L e n i 是此段终点到起点的距离。我们只需分别求出 a z i , b z i , c z i , d z i 即可。 我们一下仅分析 x i ( t ) 方程各个系数的求解, y i ( t ) , z i ( t ) 类似可得。 对第i段三次样条函数而言,其形式必然为:\\ 对x_{i}(t):\\ x_{i}(t) = ax_{i}+bx_{i}t+cx_{i}t^2+dx_{i}t^3; 0<=t<Len_{i};\\ 其中Len_{i}是此段终点到起点的距离。我们只需分别求出ax_{i},bx_{i},cx_{i},dx_{i}即可。\\ 对y_{i}(t):\\ y_{i}(t) = ay_{i}+by_{i}t+cy_{i}t^2+dy_{i}t^3; 0<=t<Len_{i};\\ 其中Len_{i}是此段终点到起点的距离。我们只需分别求出ay_{i},by_{i},cy_{i},dy_{i}即可。\\ 对z_{i}(t):\\ z_{i}(t) = az_{i}+bz_{i}t+cz_{i}t^2+dz_{i}t^3; 0<=t<Len_{i};\\ 其中Len_{i}是此段终点到起点的距离。我们只需分别求出az_{i},bz_{i},cz_{i},dz_{i}即可。\\ 我们一下仅分析x_{i}(t)方程各个系数的求解,y_{i}(t),z_{i}(t)类似可得。 对第i段三次样条函数而言,其形式必然为:xi(t):xi(t)=axi+bxit+cxit2+dxit3;0<=t<Leni;其中Leni是此段终点到起点的距离。我们只需分别求出axi,bxi,cxi,dxi即可。yi(t)yi(t)=ayi+byit+cyit2+dyit3;0<=t<Leni;其中Leni是此段终点到起点的距离。我们只需分别求出ayi,byi,cyi,dyi即可。zi(t)zi(t)=azi+bzit+czit2+dzit3;0<=t<Leni;其中Leni是此段终点到起点的距离。我们只需分别求出azi,bzi,czi,dzi即可。我们一下仅分析xi(t)方程各个系数的求解,yi(t)zi(t)类似可得。

通过 x i ( 0 ) = P i . x = x i ; 可得: a x i = x i ; 通过x_{i}(0)=P_{i}.x=x_{i};可得:\\ ax_{i}=x_{i}; 通过xi(0)=Pi.x=xi;可得:axi=xi;
2.
通过 X i ( L e n i ) = x i + 1 ; 可得: b x i = ( x i + 1 − x i ) / L e n i − L e n i ∗ ( M i + 1 . x / 6 + M i . x / 3 ) ; 通过X_{i}(Len_{i})=x_{i+1};可得:\\ bx_{i}=(x_{i+1}-x_{i})/Len_{i}-Len_{i}*(M_{i+1}.x/6+M_{i}.x/3); 通过Xi(Leni)=xi+1;可得:bxi=(xi+1xi)/LeniLeni(Mi+1.x/6+Mi.x/3);
3.
通过 x i ′ ′ ( 0 ) = M i . x ; 可得: c x i = M i . x / 2 ; 通过x''_{i}(0)=M_{i}.x;可得:\\ cx_{i}=M_{i}.x/2; 通过xi′′(0)=Mi.x;可得:cxi=Mi.x/2;
4.
通过 x i ′ ′ ( L e n i ) = M i + 1 . x ; 可得: d x i = ( M i + 1 . x − M i . x ) / ( 6 ∗ L e n i ) ; 通过x''_{i}(Len_{i})=M_{i+1}.x;可得:\\ dx_{i}=(M_{i+1}.x-M_{i}.x)/(6*Len_{i}); 通过xi′′(Leni)=Mi+1.x;可得:dxi=(Mi+1.xMi.x)/(6Leni);
在上述我们假设已经知道:
n 个顶点处 x , y , z 关于弧长参数的二阶导数。记为 M i . x , M i . y , M i . z ; n个顶点处x,y,z关于弧长参数的二阶导数。记为M_{i}.x,M_{i}.y,M_{i}.z; n个顶点处xyz关于弧长参数的二阶导数。记为Mi.xMi.yMi.z;
下面分析各个顶点处各个轴关于弧长参数二阶导数的求取。

通过 X i ′ ( L e n i ) = x i + 1 ′ 0 ,可得: M i . x ∗ L e n i / 6 + M i + 1 . x ∗ ( L e n i + 1 + L e n i ) / 3 + M i + 2 . x ∗ ( L e n i + 1 / 6 ) = ( x i + 2 − x i + 1 ) / L e n i + 1 − ( x i + 1 − x i ) / L e n i ; 通过X'_{i}(Len_{i})=x'_{i+1}{0},可得:\\ M_{i}.x*Len_{i}/6+M_{i+1}.x*(Len_{i+1}+Len_{i})/3+M_{i+2}.x*(Len_{i+1}/6)=\\ (x_{i+2}-x_{i+1})/Len_{i+1}-(x_{i+1}-x_{i})/Len_{i}; 通过Xi(Leni)=xi+10,可得:Mi.xLeni/6+Mi+1.x(Leni+1+Leni)/3+Mi+2.x(Leni+1/6)=(xi+2xi+1)/Leni+1(xi+1xi)/Leni;
上述共可构成n-2个线性方程。为了求解n个自变量,我们还需要两个。

通过提供 x 0 ′ ( 0 ) ,可得: M 0 . x ∗ ( − L e n 0 / 3 ) + M 1 . x ∗ ( − L e n 0 / 6 ) = x 0 ′ ( 0 ) − ( x 1 − x 0 ) / L e n 0 ; 通过提供x'_{0}(0),可得:\\ M_{0}.x*(-Len_{0}/3)+M_{1}.x*(-Len_{0}/6)=x'_{0}(0)-(x_{1}-x_{0})/Len_{0}; 通过提供x0(0),可得:M0.x(Len0/3)+M1.x(Len0/6)=x0(0)(x1x0)/Len0;
3.
通过提供 x n − 2 ′ ( L e n n − 2 ) ,可得: M n − 2 . x ∗ ( L e n n − 2 / 6 ) + M n − 1 . x ∗ ( L e n n − 2 / 3 ) = x n − 2 ′ ( L e n n − 2 ) − ( x n − 1 − x n − 2 ) / L e n n − 2 ; 通过提供x'_{n-2}(Len_{n-2}),可得:\\ M_{n-2}.x*(Len_{n-2}/6)+M_{n-1}.x*(Len_{n-2}/3)=\\ x'_{n-2}(Len_{n-2})-(x_{n-1}-x_{n-2})/Len_{n-2}; 通过提供xn2(Lenn2),可得:Mn2.x(Lenn2/6)+Mn1.x(Lenn2/3)=xn2(Lenn2)(xn1xn2)/Lenn2;
这样,我们构建了n个线性等式。这n个线性等式,可以用矩阵形式表示为:
A n , n M n , 1 = D n , 1 ; M n , 1 = A n , n − 1 D n , 1 ; A_{n,n}M_{n,1}=D_{n,1};\\ M_{n,1}=A^{-1}_{n,n}D_{n,1}; An,nMn,1=Dn,1;Mn,1=An,n1Dn,1;
这样,我们通过先求取A的逆矩阵,接着便可求出M。然后依据前述求取系数的方法,便可唯一确定每一段x关于弧长的三次参数曲线方程。每一段y,z关于弧长的三次参数曲线方程类似可得。

这篇关于三次插值曲线--插值技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086249

相关文章

乐鑫 Matter 技术体验日|快速落地 Matter 产品,引领智能家居生态新发展

随着 Matter 协议的推广和普及,智能家居行业正迎来新的发展机遇,众多厂商纷纷投身于 Matter 产品的研发与验证。然而,开发者普遍面临技术门槛高、认证流程繁琐、生产管理复杂等诸多挑战。  乐鑫信息科技 (688018.SH) 凭借深厚的研发实力与行业洞察力,推出了全面的 Matter 解决方案,包含基于乐鑫 SoC 的 Matter 硬件平台、基于开源 ESP-Matter SDK 的一

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

持久层 技术选型如何决策?JPA,Hibernate,ibatis(mybatis)

转自:http://t.51jdy.cn/thread-259-1-1.html 持久层 是一个项目 后台 最重要的部分。他直接 决定了 数据读写的性能,业务编写的复杂度,数据结构(对象结构)等问题。 因此 架构师在考虑 使用那个持久层框架的时候 要考虑清楚。 选择的 标准: 1,项目的场景。 2,团队的技能掌握情况。 3,开发周期(开发效率)。 传统的 业务系统,通常业

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

(1995-2022年) 全国各省份-技术交易活跃度

技术交易活跃度是一个关键指标,用于衡量技术市场的交易频繁程度和活跃性。它不仅显示了市场参与者对技术交易的参与热情,而且交易的频率也体现了市场的活力。这一指标对于不同的利益相关者具有不同的意义: 对投资者而言,技术交易活跃度是把握市场趋势、评估交易策略和预测市场波动的重要工具。对企业来说,技术交易活跃度反映了其技术创新的活跃程度和市场竞争的激烈程度,有助于企业制定技术创新和市场竞争策略。对政策制定

AI与音乐:当技术与艺术发生冲突

AI在创造还是毁掉音乐? 在科技日新月异的今天,人工智能(AI)已经渗透到了我们生活的方方面面,音乐领域也不例外。然而,尽管AI为音乐创作带来了前所未有的便利,我却深感其正在毁掉音乐的本质。 首先,AI的介入使得音乐创作过程变得过于机械化。传统的音乐创作往往需要音乐家们经过长时间的思考、尝试和修改,最终才能创作出触动人心的作品。这一过程不仅体现了音乐家的才华和技艺,更蕴含了他们对生活的感悟和对

IPD推行成功的核心要素(十一)技术规划与平台规划促进公司战略成功

随着外部大环境的影响,各企业仅有良好的愿望是不够的。预测并顺应新兴市场和技术的变化,变危机为转机,不断推出强大的产品才是一个公司持续繁荣的根本保障。而高效的产品开发往往是基于某些关键技术,针对市场推出的一个或几个产品系列,这些产品系列通常共用一些产品平台,共用一种或者几种关键技术。当一家企业进入了平稳发展期,已经建立了较为完善的管理制度和产品开发流程,但是依然认为竞争对手是那样强大,那样不可战胜。

云原生容器技术入门:Docker、K8s技术的基本原理和用途

🐇明明跟你说过:个人主页 🏅个人专栏:《未来已来:云原生之旅》🏅 🔖行路有良友,便是天堂🔖 目录 一、容器技术概述 1、什么是容器技术 2、容器技术的历史与发展 3、容器技术与虚拟机的比较 4、容器技术在云原生中的作用 二、Docker基础 1、Docker简介 2、Docker架构 3、Docker与工作原理 三、Kubernetes(k8s)基础 1、

JavaScript Promise技术

你可能已经知道Promises现在已经是JavaScript标准的一部分了。Chrome 32 beta版本已经实现了基本的Promise API。如今,Promise的概念在web开发中已经不是什么新鲜玩意了。我们中的大多数人已经在一些流行的JS库例如Q、when、RSVP.js中使用过了Promises。即使是jQuery中也有一个和Promises很类似叫做Deferred的东西。但是Ja

Sharding(切片)技术(解决数据库分库一致性问题)

Sharding(切片) 不是一门新技术,而是一个相对简朴的软件理念,就是当我们的数据库单机无法承受高强度的i/o时,我们就考虑利用 sharding 来把这种读写压力分散到各个主机上去。 所以Sharding 不是一个某个特定数据库软件附属的功能,而是在具体技术细节之上的抽象处理,是Horizontal Partitioning 水平扩展(或横向扩展)的解决方案,其主要目的是为突破单节点数