算法:渐进记号的含义及时间复杂度计算

2024-06-23 04:44

本文主要是介绍算法:渐进记号的含义及时间复杂度计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

渐进记号及时间复杂度计算

渐近符号

渐近记号 Ω \Omega Ω

   f ( n ) = Ω ( g ( n ) ) f(n)=\Omega(g(n)) f(n)=Ω(g(n)) 当且仅当存在正的常数C和 n 0 n_0 n0,使得对于所有的 n ≥ n 0 n≥ n_0 nn0 ,有 f ( n ) ≥ C ( g ( n ) ) f(n)≥C(g(n)) f(n)C(g(n))。此时,称 g ( n ) g(n) g(n) f ( n ) f(n) f(n)的下界。
  根据符号 Ω \Omega Ω的定义,用它评估算法的复杂度得到的是问题规模充分大时的一个下界。这个下界的阶越高,评估越精确,越有价值。

例:设 f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,则
f ( n ) = Ω ( n 2 ) f(n)=\Omega(n^2) f(n)=Ω(n2),取 c = 1 , n 0 = 1 c=1,n_0=1 c=1,n0=1 即可
f ( n ) = Ω ( 100 n ) f(n)=\Omega(100n) f(n)=Ω(100n),取 c = 1 / 100 , n 0 = 1 c=1/100,n_0=1 c=1/100,n0=1 即可
显然, Ω ( n 2 ) \Omega(n^2) Ω(n2)作为下界更为精确。

渐进记号 Θ \Theta Θ

   f ( n ) = Θ ( g ( n ) ) f(n)=\Theta(g(n)) f(n)=Θ(g(n)) 当且仅当存在正常数和 C 1 , C 2 , n 0 C_1,C_2,n_0 C1,C2,n0,使得对于所有的 n ≥ n 0 n≥n_0 nn0, 有 C 1 ( g ( n ) ) ≤ f ( n ) ≤ C 2 ( g ( n ) ) C_1(g(n))≤f(n)≤ C_2(g(n)) C1(g(n))f(n)C2(g(n))。此时,称 f ( n ) f(n) f(n) g ( n ) g(n) g(n)同阶。
  这种渐进符号是指,当问题规模足够大的时候,算法的运行时间将主要取决于时间表达式的第一项,其它项的执行时间可以忽略不计。第一项的常数系数,随着n的增大,对算法的执行时间也变得不重要了。

例: 3 n + 2 = Θ ( n ) 3n+2= Θ(n) 3n+2=Θ(n)
10 n 2 + 4 n + 2 = Θ ( n 2 ) 10n^2+4n+2= Θ(n^2) 10n2+4n+2=Θ(n2)
5 × 2 n + n 2 = Θ ( 2 n ) 5×2^n+n^2= Θ(2^n) 5×2n+n2=Θ(2n)

渐进记号小 ο \omicron ο

   f ( n ) = ο ( g ( n ) ) f(n)=\omicron(g(n)) f(n)=ο(g(n))当且仅当 f ( n ) = ο ( g ( n ) ) f(n)=\omicron(g(n)) f(n)=ο(g(n)) g ( n ) ≠ ο ( f ( n ) ) g(n)\neq \omicron(f(n)) g(n)=ο(f(n)),此时, g ( n ) g(n) g(n) f ( n ) f(n) f(n)的一个绝对上界。
  小 ο \omicron ο提供的上界可能是渐近紧确的,也可能是非紧确的。(如: 2 n 2 = ο ( n 2 ) 2n^2=\omicron(n^2) 2n2=ο(n2)是渐近紧确的,而 2 n = ο ( n 2 ) 2n=\omicron(n^2) 2n=ο(n2)是非紧确上界。

例: 4 n l o g n + 7 = ο ( n 2 ) 4nlogn + 7= \omicron(n^2) 4nlogn+7=ο(n2)

渐进记号小 ω \omega ω

   f ( n ) = ω ( g ( n ) ) f(n)=\omega(g(n)) f(n)=ω(g(n))当且仅当 f ( n ) = ω ( g ( n ) ) f(n)=\omega(g(n)) f(n)=ω(g(n)) g ( n ) ≠ ω ( f ( n ) ) g(n)\neq \omega(f(n)) g(n)=ω(f(n)),此时, g ( n ) g(n) g(n) f ( n ) f(n) f(n)的一个绝对下界。
   ω \omega ω表示一个非渐进紧确的下界。

例: f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,则 f ( n ) = f(n)= f(n)=\omega ( n ) (n) (n)是正确的, f ( n ) = f(n)= f(n)=\omega ( n 2 ) (n^2) (n2)是错误的。

渐进记号大 O \Omicron O

  设 f ( n ) f(n) f(n) g ( n ) g(n) g(n) 是定义域为自然数集上的函数。若存在正数 c c c n 0 n_0 n0c和n_0c,使得对一切 n ≥ n 0 n≥ n_0 nn0 都有 0 ≤ f ( n ) ≤ c g ( n ) 0 ≤ f(n) ≤ cg(n) 0f(n)cg(n)成立,则称 f ( n ) f(n) f(n)的渐进的上界是 g ( n ) g(n) g(n),记作 f ( n ) = O g ( n ) f(n)=\Omicron g(n) f(n)=Og(n)
  根据符号大 O \Omicron O的定义,用它评估算法的复杂度得到的只是问题规模充分大时的一个上界。这个上界的阶越低,评估越精确,越有价值。

例:设 f ( n ) = n 2 + n f(n)=n^2+n f(n)=n2+n,有
f ( n ) = O ( n 2 ) f(n)=\Omicron(n^2) f(n)=O(n2),取 c = 2 , n 0 = 1 c=2,n_0=1 c=2,n0=1即可
f ( n ) = O ( n 3 ) f(n)=\Omicron(n^3) f(n)=O(n3),取 c = 1 , n 0 = 2 c=1,n_0=2 c=1,n0=2即可

常见的时间复杂度关系

O(1)<O(log(n))<O(n)<O(nlogn)<O(n^{2})

   O ( 2 n ) O(2^{n}) O(2n) O ( n ! ) O(n!) O(n!)大于以上的所有时间复杂度,具体原因参考图像。

时间复杂度计算:递归方程

  加、减、乘、除、比较、赋值等操作,一般被看作是基本操作,并约定所用的时间都是一个单位时间;通过计算这些操作分别执行了多少次来确定程序总的执行步数。一般来说,算法中关键操作的执行次数决定了算法的时间复杂度。
  比较简单的算法时间复杂性估计通常需要观察在for、while循环中的关键操作执行次数,在这里我们只讨论一种比较复杂的时间复杂度计算问题:求递归方程解的渐近阶的方法。递归式就是一个等式,代表了递归算法运算时间和n的关系,通过更小输入的函数值来描述一个函数。那么如何求得递归算法的Θ渐进界呢?主要有三种方法。

代入法

  代入法是指自己猜测一个界,然后用数学归纳法进行验证是否正确,这种猜测主要靠经验,不常用。

迭代法

  迭代法是指循环地展开递归方程,然后把递归方程转化为和式,使用求和技术解之。

套用公式法

  这个方法为估计形如: T ( n ) = a T ( n / b ) + f ( n ) T(n)=aT(n/b)+f(n) T(n)=aT(n/b)+f(n) 的递归方程解的渐近阶提供三个可套用的公式。要求其中的a≥1和b>1是常数,f(n)是一个确定的正函数。那么在三种情况下,我们可以得到T(n)的渐进估计式,懒得打公式,所以截图。
在这里插入图片描述

这篇关于算法:渐进记号的含义及时间复杂度计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086225

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段