使用faiss存储HuggingFaceBgeEmbeddings向量化处理数据及反序列化加载使用的例子

本文主要是介绍使用faiss存储HuggingFaceBgeEmbeddings向量化处理数据及反序列化加载使用的例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

周末宅在家里无所事事,实验了一下如何使用bge对word文档进行向量化处理后并存储到faiss里面供后续反序列化加载使用,下面是具体实现代码。

一,加载word数据并读取内容进行向量化存储

import os
import docx
from tqdm import tqdm
from langchain.docstore.document import Document
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter# 读取并处理.docx文档,并将表格转换为Markdown格式
def read_docx(file_path):doc = docx.Document(file_path)full_text = []for para in doc.paragraphs:full_text.append(para.text)for table in doc.tables:md_table = []for row in table.rows:md_row = "| " + " | ".join(cell.text.strip() for cell in row.cells) + " |"md_table.append(md_row)full_text.append("\n".join(md_table))return '\n'.join(full_text)def load_wordfile(filepath):# 提取文件名(不含扩展名)file_name = os.path.splitext(os.path.basename(file_path))[0]text=read_docx(filepath)    text_splitter =RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=128)document = Document(page_content=text, metadata={"source": filepath,"country":file_name,"datayear":2024})chunks = text_splitter.split_documents([document])print(f"Splitted documents into {len(chunks)} chunks")return chunksif __name__ == "__main__":# 文档目录和向量库路径docx_directory = 'e:/ai/doc/'vector_store_path = 'e:/ai/vector/data'# 读取目录中的所有.docx文件并进行处理documents = []file_list = [f for f in os.listdir(docx_directory) if f.endswith('.docx')]for file_name in tqdm(file_list, desc="读取文档中"):file_path = os.path.join(docx_directory, file_name)docs = load_wordfile(file_path) #load_file(file_path)documents.extend(docs)model_name = "E:/ai/bge-small-zh-v1.5"model_kwargs = {"device": "cpu"}encode_kwargs = {"normalize_embeddings": True}hf = HuggingFaceBgeEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)#使用faiss进行向量库构建vector_store =FAISS.from_documents(documents, hf)# 保存向量库vector_store.save_local(vector_store_path)

  我家里的电脑没有GPU,所以使用的是cpu进行向量化计算,如果是有cuda的环境,将上面代码中的cpu改成cuda就可以了。

 二、反序列化加载并提供检索api服务

import os
import pickle
from fastapi import FastAPI, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISSapp = FastAPI()# 允许跨域访问
app.add_middleware(CORSMiddleware,allow_origins=["*"],  # 允许所有来源allow_credentials=True,allow_methods=["*"],  # 允许所有HTTP方法allow_headers=["*"],  # 允许所有HTTP头
)# 全球国家和地区列表
asian_countries = [# 东亚"中国", "日本", "韩国", "朝鲜", "蒙古",# 东南亚"印度尼西亚", "泰国", "马来西亚", "新加坡", "菲律宾", "越南", "缅甸", "柬埔寨", "老挝", "文莱", "东帝汶",# 南亚"印度", "巴基斯坦", "孟加拉国", "斯里兰卡", "尼泊尔", "不丹", "马尔代夫", "阿富汗",# 中亚"哈萨克斯坦", "乌兹别克斯坦", "土库曼斯坦", "吉尔吉斯斯坦", "塔吉克斯坦",# 西亚(中东)"土耳其", "伊朗", "伊拉克", "叙利亚", "约旦", "黎巴嫩", "以色列", "巴勒斯坦", "沙特阿拉伯", "阿联酋", "卡塔尔", "科威特", "阿曼", "巴林", "也门", "乔治亚", "亚美尼亚", "阿塞拜疆",# 北亚"俄罗斯"
]african_countries = ["阿尔及利亚", "安哥拉", "贝宁", "博茨瓦纳", "布基纳法索", "布隆迪", "佛得角", "喀麦隆", "中非共和国", "乍得", "科摩罗", "刚果(布)", "刚果(金)", "吉布提", "埃及", "赤道几内亚", "厄立特里亚", "斯威士兰", "埃塞俄比亚", "加蓬", "冈比亚", "加纳", "几内亚", "几内亚比绍", "科特迪瓦", "肯尼亚", "莱索托", "利比里亚", "利比亚", "马达加斯加", "马拉维", "马里", "毛里塔尼亚", "毛里求斯", "摩洛哥", "莫桑比克", "纳米比亚", "尼日尔", "尼日利亚", "卢旺达", "圣多美和普林西比", "塞内加尔", "塞舌尔", "塞拉利昂", "索马里", &

这篇关于使用faiss存储HuggingFaceBgeEmbeddings向量化处理数据及反序列化加载使用的例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085457

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详