快速傅里叶变换的相关定义、原理及其递归算法

2024-06-22 18:58

本文主要是介绍快速傅里叶变换的相关定义、原理及其递归算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    快速傅里叶变换FFT是离散傅里叶变换DFT的一种快速算法,实际上诸如Matlab等科学计算软件都已经实现了FFT,只需调用相应的接口即可。在ACM里,FFT的典型应用就是大数的乘法或者多项式的乘法。顺便,如果题目规模不是很大,有关大数的运算推荐使用Java语言,使用java.math.BigInteger包完成;包括高精度运算,可以使用BigDecimal包完成。任何情况下,会一门外语总是很重要的!

    傅里叶变换一般指的是连续傅里叶变换,其定义如下:


    傅里叶逆变换的定义如下:


    离散傅里叶变换与连续傅里叶变换“类似”,只不过把积分换成级数。DFT以及IDFT的定义式如下:






    令源序列x={0, 1, 3},则DFT的结果是X={4, exp(-i*2PI/3)+3exp(-i*4PI/4), exp(0i*4PI/3)+3exp(-i*8PI/3)}  ;

另外一个例子, 若令源序列为x={2, 4},则DFT的结果是X={6, -2}。

  

    FFT和卷积关系密切,连续卷积和离散卷积的定义分别如下:



    下面举一个简单的例子显示离散卷积的运算,令序列f={0,1,3},序列g={2,4},则其卷积的计算式如下:


所以,卷积的结果序列y={0, 2, 10, 12}


    卷积可以使用DFT完成,本质上这也是大数乘法、多项式乘法可以使用DFT完成的原理。当然在完成时,首先要将源序列的长度补齐到合适的数值。使用DFT完成卷积或者多项式乘法时,序列长度应该是2的幂,显然又不能小于最终结果的长度。上例中结果长度为4,恰好是2的幂,所以源序列补到4长度即可。于是 f = {0, 1, 3, 0},g = {2, 4, 0, 0}。NOTE:对大数乘法一定要注意结果长度的估算,本例如果表示大数乘法,则是一个3位数乘2位数,其结果最多是一个5位数,所以长度应补到8为佳。

    f和g的DFT分别是


     将其对应项相乘,得到


    再对该序列做一个离散傅里叶逆变换,可以得到{0, 2, 10, 12},与原始卷积的结果相同,在本质上这也是两个多项式乘法的结果。另一方面,如果考虑三位数310和两位数42的乘法,其结果是13020,与卷积的结果同样是吻合的。注意乘法运算需要考虑进位!

    所以,给定多项式a、b,求其乘积c,可以这样实现:

  1. 将a、b高位补零到合适长度
  2. 对a、b分别作DFT得到Fa和Fb
  3. Fa、Fb对应项相乘得到Fc
  4. 对Fc做离散傅里叶逆变换IDFT即为结果c

   很显然第3步为O(N),所以关键在第2、4步。而DFT和IDFT按照定义做,同样为O(N*N),没有任何改进。这个步骤之所以可行,就是因为存在FFT算法,可以达到O(NlogN)。

    为了方便书写,令WN=exp(-i*2PI/N),其中N是下标,而WN称之为单位复根。数学习惯上应该用希腊字母Ω的小写来表示单位复根。 单位复根有以下性质:

  1. WN^k = WN^(k+N)。很显然,因为WN的N次方就是1,这个其实是周期性
  2. WN^k = - WN^(k+N/2), 当N为偶数时。这也很显然,因为WN的N/2次方就是-1,这是对称性。
  3. WN^k = W(N/2)^(k/2),当N、k均为偶数。这个根据定义很容易推算,右边实际就是exp(-i*2PI/(N/2))^(k/2),显然等于左边
    此处仅以一个8点DFT来描述FFT的原理,如果想看到更一般性、更本质的描述及证明,可以去阅读《Introduction to Algorithms》。

    考虑一个8点DFT,其原始公式是:

将其奇偶项分开书写,可写成:

将奇数项提取出一个公因子,可写成(注意下标n的变化):



注意到单位复根的脚标是8,为偶数,根据单位复根的性质3,可以做一个比例变换,得到:




于是再对求和符号的下标n做一个变换,得到:



接下来,按照k值,将上式写成2个部分:


    注意上式中的第1个式子,该式的前后两个部分都是一个4点序列的DFT,所以该式实际上就是2个4点DFT之和。至于第2个式子,首先变化k将其改写为:


然后考虑到单位复根的性质1和性质2,上式可以改写为:


    所以最终一个8点DFT变为了:


 

    该式表明一个8点DFT转为了2个4点DFT,8点DFT的结果中的前4项是这两个4点DFT之和(带一个单位复根的因子),而后4项是其差。递归下去,4点DFT可以变为2个2点DFT,而2点DFT变为2个1点DFT,最后1点DFT就是其本身。

    所以,基于此原理,FFT的递归算法非常容易实现:



    当然这个递归算法完全是纯按原理实现的,考虑到程序实现,有好几个可以优化的地方。例如红色部分,完全可以进行优化,提高代码执行效率。


这篇关于快速傅里叶变换的相关定义、原理及其递归算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085131

相关文章

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI