快速傅里叶变换的相关定义、原理及其递归算法

2024-06-22 18:58

本文主要是介绍快速傅里叶变换的相关定义、原理及其递归算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    快速傅里叶变换FFT是离散傅里叶变换DFT的一种快速算法,实际上诸如Matlab等科学计算软件都已经实现了FFT,只需调用相应的接口即可。在ACM里,FFT的典型应用就是大数的乘法或者多项式的乘法。顺便,如果题目规模不是很大,有关大数的运算推荐使用Java语言,使用java.math.BigInteger包完成;包括高精度运算,可以使用BigDecimal包完成。任何情况下,会一门外语总是很重要的!

    傅里叶变换一般指的是连续傅里叶变换,其定义如下:


    傅里叶逆变换的定义如下:


    离散傅里叶变换与连续傅里叶变换“类似”,只不过把积分换成级数。DFT以及IDFT的定义式如下:






    令源序列x={0, 1, 3},则DFT的结果是X={4, exp(-i*2PI/3)+3exp(-i*4PI/4), exp(0i*4PI/3)+3exp(-i*8PI/3)}  ;

另外一个例子, 若令源序列为x={2, 4},则DFT的结果是X={6, -2}。

  

    FFT和卷积关系密切,连续卷积和离散卷积的定义分别如下:



    下面举一个简单的例子显示离散卷积的运算,令序列f={0,1,3},序列g={2,4},则其卷积的计算式如下:


所以,卷积的结果序列y={0, 2, 10, 12}


    卷积可以使用DFT完成,本质上这也是大数乘法、多项式乘法可以使用DFT完成的原理。当然在完成时,首先要将源序列的长度补齐到合适的数值。使用DFT完成卷积或者多项式乘法时,序列长度应该是2的幂,显然又不能小于最终结果的长度。上例中结果长度为4,恰好是2的幂,所以源序列补到4长度即可。于是 f = {0, 1, 3, 0},g = {2, 4, 0, 0}。NOTE:对大数乘法一定要注意结果长度的估算,本例如果表示大数乘法,则是一个3位数乘2位数,其结果最多是一个5位数,所以长度应补到8为佳。

    f和g的DFT分别是


     将其对应项相乘,得到


    再对该序列做一个离散傅里叶逆变换,可以得到{0, 2, 10, 12},与原始卷积的结果相同,在本质上这也是两个多项式乘法的结果。另一方面,如果考虑三位数310和两位数42的乘法,其结果是13020,与卷积的结果同样是吻合的。注意乘法运算需要考虑进位!

    所以,给定多项式a、b,求其乘积c,可以这样实现:

  1. 将a、b高位补零到合适长度
  2. 对a、b分别作DFT得到Fa和Fb
  3. Fa、Fb对应项相乘得到Fc
  4. 对Fc做离散傅里叶逆变换IDFT即为结果c

   很显然第3步为O(N),所以关键在第2、4步。而DFT和IDFT按照定义做,同样为O(N*N),没有任何改进。这个步骤之所以可行,就是因为存在FFT算法,可以达到O(NlogN)。

    为了方便书写,令WN=exp(-i*2PI/N),其中N是下标,而WN称之为单位复根。数学习惯上应该用希腊字母Ω的小写来表示单位复根。 单位复根有以下性质:

  1. WN^k = WN^(k+N)。很显然,因为WN的N次方就是1,这个其实是周期性
  2. WN^k = - WN^(k+N/2), 当N为偶数时。这也很显然,因为WN的N/2次方就是-1,这是对称性。
  3. WN^k = W(N/2)^(k/2),当N、k均为偶数。这个根据定义很容易推算,右边实际就是exp(-i*2PI/(N/2))^(k/2),显然等于左边
    此处仅以一个8点DFT来描述FFT的原理,如果想看到更一般性、更本质的描述及证明,可以去阅读《Introduction to Algorithms》。

    考虑一个8点DFT,其原始公式是:

将其奇偶项分开书写,可写成:

将奇数项提取出一个公因子,可写成(注意下标n的变化):



注意到单位复根的脚标是8,为偶数,根据单位复根的性质3,可以做一个比例变换,得到:




于是再对求和符号的下标n做一个变换,得到:



接下来,按照k值,将上式写成2个部分:


    注意上式中的第1个式子,该式的前后两个部分都是一个4点序列的DFT,所以该式实际上就是2个4点DFT之和。至于第2个式子,首先变化k将其改写为:


然后考虑到单位复根的性质1和性质2,上式可以改写为:


    所以最终一个8点DFT变为了:


 

    该式表明一个8点DFT转为了2个4点DFT,8点DFT的结果中的前4项是这两个4点DFT之和(带一个单位复根的因子),而后4项是其差。递归下去,4点DFT可以变为2个2点DFT,而2点DFT变为2个1点DFT,最后1点DFT就是其本身。

    所以,基于此原理,FFT的递归算法非常容易实现:



    当然这个递归算法完全是纯按原理实现的,考虑到程序实现,有好几个可以优化的地方。例如红色部分,完全可以进行优化,提高代码执行效率。


这篇关于快速傅里叶变换的相关定义、原理及其递归算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085131

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET