快速傅里叶变换的相关定义、原理及其递归算法

2024-06-22 18:58

本文主要是介绍快速傅里叶变换的相关定义、原理及其递归算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    快速傅里叶变换FFT是离散傅里叶变换DFT的一种快速算法,实际上诸如Matlab等科学计算软件都已经实现了FFT,只需调用相应的接口即可。在ACM里,FFT的典型应用就是大数的乘法或者多项式的乘法。顺便,如果题目规模不是很大,有关大数的运算推荐使用Java语言,使用java.math.BigInteger包完成;包括高精度运算,可以使用BigDecimal包完成。任何情况下,会一门外语总是很重要的!

    傅里叶变换一般指的是连续傅里叶变换,其定义如下:


    傅里叶逆变换的定义如下:


    离散傅里叶变换与连续傅里叶变换“类似”,只不过把积分换成级数。DFT以及IDFT的定义式如下:






    令源序列x={0, 1, 3},则DFT的结果是X={4, exp(-i*2PI/3)+3exp(-i*4PI/4), exp(0i*4PI/3)+3exp(-i*8PI/3)}  ;

另外一个例子, 若令源序列为x={2, 4},则DFT的结果是X={6, -2}。

  

    FFT和卷积关系密切,连续卷积和离散卷积的定义分别如下:



    下面举一个简单的例子显示离散卷积的运算,令序列f={0,1,3},序列g={2,4},则其卷积的计算式如下:


所以,卷积的结果序列y={0, 2, 10, 12}


    卷积可以使用DFT完成,本质上这也是大数乘法、多项式乘法可以使用DFT完成的原理。当然在完成时,首先要将源序列的长度补齐到合适的数值。使用DFT完成卷积或者多项式乘法时,序列长度应该是2的幂,显然又不能小于最终结果的长度。上例中结果长度为4,恰好是2的幂,所以源序列补到4长度即可。于是 f = {0, 1, 3, 0},g = {2, 4, 0, 0}。NOTE:对大数乘法一定要注意结果长度的估算,本例如果表示大数乘法,则是一个3位数乘2位数,其结果最多是一个5位数,所以长度应补到8为佳。

    f和g的DFT分别是


     将其对应项相乘,得到


    再对该序列做一个离散傅里叶逆变换,可以得到{0, 2, 10, 12},与原始卷积的结果相同,在本质上这也是两个多项式乘法的结果。另一方面,如果考虑三位数310和两位数42的乘法,其结果是13020,与卷积的结果同样是吻合的。注意乘法运算需要考虑进位!

    所以,给定多项式a、b,求其乘积c,可以这样实现:

  1. 将a、b高位补零到合适长度
  2. 对a、b分别作DFT得到Fa和Fb
  3. Fa、Fb对应项相乘得到Fc
  4. 对Fc做离散傅里叶逆变换IDFT即为结果c

   很显然第3步为O(N),所以关键在第2、4步。而DFT和IDFT按照定义做,同样为O(N*N),没有任何改进。这个步骤之所以可行,就是因为存在FFT算法,可以达到O(NlogN)。

    为了方便书写,令WN=exp(-i*2PI/N),其中N是下标,而WN称之为单位复根。数学习惯上应该用希腊字母Ω的小写来表示单位复根。 单位复根有以下性质:

  1. WN^k = WN^(k+N)。很显然,因为WN的N次方就是1,这个其实是周期性
  2. WN^k = - WN^(k+N/2), 当N为偶数时。这也很显然,因为WN的N/2次方就是-1,这是对称性。
  3. WN^k = W(N/2)^(k/2),当N、k均为偶数。这个根据定义很容易推算,右边实际就是exp(-i*2PI/(N/2))^(k/2),显然等于左边
    此处仅以一个8点DFT来描述FFT的原理,如果想看到更一般性、更本质的描述及证明,可以去阅读《Introduction to Algorithms》。

    考虑一个8点DFT,其原始公式是:

将其奇偶项分开书写,可写成:

将奇数项提取出一个公因子,可写成(注意下标n的变化):



注意到单位复根的脚标是8,为偶数,根据单位复根的性质3,可以做一个比例变换,得到:




于是再对求和符号的下标n做一个变换,得到:



接下来,按照k值,将上式写成2个部分:


    注意上式中的第1个式子,该式的前后两个部分都是一个4点序列的DFT,所以该式实际上就是2个4点DFT之和。至于第2个式子,首先变化k将其改写为:


然后考虑到单位复根的性质1和性质2,上式可以改写为:


    所以最终一个8点DFT变为了:


 

    该式表明一个8点DFT转为了2个4点DFT,8点DFT的结果中的前4项是这两个4点DFT之和(带一个单位复根的因子),而后4项是其差。递归下去,4点DFT可以变为2个2点DFT,而2点DFT变为2个1点DFT,最后1点DFT就是其本身。

    所以,基于此原理,FFT的递归算法非常容易实现:



    当然这个递归算法完全是纯按原理实现的,考虑到程序实现,有好几个可以优化的地方。例如红色部分,完全可以进行优化,提高代码执行效率。


这篇关于快速傅里叶变换的相关定义、原理及其递归算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085131

相关文章

乐鑫 Matter 技术体验日|快速落地 Matter 产品,引领智能家居生态新发展

随着 Matter 协议的推广和普及,智能家居行业正迎来新的发展机遇,众多厂商纷纷投身于 Matter 产品的研发与验证。然而,开发者普遍面临技术门槛高、认证流程繁琐、生产管理复杂等诸多挑战。  乐鑫信息科技 (688018.SH) 凭借深厚的研发实力与行业洞察力,推出了全面的 Matter 解决方案,包含基于乐鑫 SoC 的 Matter 硬件平台、基于开源 ESP-Matter SDK 的一

RecastNavigation之Poly相关类

Poly分成正常的Poly 和 OffMeshPoly。 正常的Poly 又分成 原始的Poly 和 Detail化的Poly,本文介绍这两种。 Poly的边分成三种类型: 1. 正常边:有tile内部的poly与之相邻 2.border边:没有poly与之相邻 3.Portal边:与之相邻的是外部tile的poly   由firstLink索引 得到第一个连接的Poly  通

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

通俗范畴论4 范畴的定义

注:由于CSDN无法显示本文章源文件的公式,因此部分下标、字母花体、箭头表示可能会不正常,请读者谅解 范畴的正式定义 上一节我们在没有引入范畴这个数学概念的情况下,直接体验了一个“苹果1”范畴,建立了一个对范畴的直观。本节我们正式学习范畴的定义和基本性质。 一个范畴(Category) C𝐶,由以下部分组成: 数据: 对象(Objects):包含若干个对象(Objects),这些

SQL Server中,always on服务器的相关操作

在SQL Server中,建立了always on服务,可用于数据库的同步备份,当数据库出现问题后,always on服务会自动切换主从服务器。 例如192.168.1.10为主服务器,12为从服务器,当主服务器出现问题后,always on自动将主服务器切换为12,保证数据库正常访问。 对于always on服务器有如下操作: 1、切换主从服务器:假如需要手动切换主从服务器时(如果两个服务

LVGL快速入门笔记

目录 一、基础知识 1. 基础对象(lv_obj) 2. 基础对象的大小(size) 3. 基础对象的位置(position) 3.1 直接设置方式 3.2 参照父对象对齐 3.3 获取位置 4. 基础对象的盒子模型(border-box) 5. 基础对象的样式(styles) 5.1 样式的状态和部分 5.1.1 对象可以处于以下状态States的组合: 5.1.2 对象

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库