聚类算法:DBScan算法

2024-06-22 14:38
文章标签 算法 聚类 dbscan

本文主要是介绍聚类算法:DBScan算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对算法的用例是在Spark平台对学生上网记录处理的一个实例,参考地址见GitHub上的DBScan算法运用实例

 

一、问题提出 

先考虑一个问题,对下左图中的数据集合怎么聚类?对右图的无规则的数据集合又该如何聚类?

 


二、概念介绍 

邻域半径(radius):以当前对象为核心确定密度区域范围时引用的长度,二维平面中就指以当前对象为圆心确定圆时引用所用的半径。如下图中的Eps即为领域半径。

密度域值(minPts):以当前对象为核心,以邻域半径为长度,所确定的范围内满足指定要求的最少元素的个数。

核心对象:若一个对象其邻域半径radius内对象元素个数大于等于minPts,则称该对象为核心对象。

直接密度可达:若一个核心对象P,其邻域半径内若干个点,则这若干个点都有从对象P是直接密度可达的。

密度可达:对象链P(1),P(2),***,P(n),若P(i+1)是从P(i)直接密度可达,则P(n)是从P(1)密度可达(注意:密度可达不是等价关系,因为它不一定是对称的)。

密度相连:存在对象O属于区域D,使得对象S和对象R都从O是密度可达的,则S与R密度相连(注意:密度相连具有等价关系,eg.O1和O2密度相连,O2和O3密度相连,则O1和O3也是密度相连的)。


  

三、算法介绍 

DBScan是具有噪声应用的基于密度的空间聚类算法,可以根据用户指定的参数radius(的邻域半径)和minPts(密度域值),对数据集合进行自动聚类。其最大的特点就是算法本身可以自己决定聚类的数量而不像K-Means算法需要人工指定聚类的数目,可以发现任意形状的类簇,同时可以过滤噪声点和低密度区域。

1、算法的过程描述如下: 

输入:初始数据集合、邻域半径(radius)和密度域值(minPts)

建立聚类集合:分别以每个对象为考察对象判断其是否为核心对象,如果是核心对象则建立聚类集合

合并集合:根据密度相连的原则合并聚类集合

输出:输出整理合并达到密度域值要求的集合

2、算法的几个关键点: 

(1)如何判断各对象是否为核心对象

 判断是否为核心对象时,首先以当前对象为基准,依次计算它与数据集合中其他点的距离,如果距离小于给定的radius(即distance(p,q)<radius),则当前对象的直接密度可达点计数加1,当遍历完数据集合后,若当前对象的直接密度可达点>=minPts,则当前对象是核心对象,反之则不是。如图当radius=1,minPts=5时q为核心对象而p不是核心对象 


(2)如何度量对象之间的距离 


(3)怎么合并聚类集合

通过上面的步骤可以将初始的数据集合处理成各个核心对象的聚类集合,依次遍历上面得以的聚类集合(如图所示),如果聚类集合Cluster中的第i个List集合中的元素在第j个List集合出现过(即两个集合存在密度相连的元素),说明两个集合可以合并成一个大集合。如图过程所示


  

四、算法总结 

优点:(1)算法本身可以自己决定聚类数量

           (2)可以发现任意形状的类簇

           (3)可以过滤低密度的区域,同时可以过滤噪声点

缺点:(1)与用户输入的邻域半径及密度域值密切相关,可能由于用户对数据特点不了解而输入不合适的参数得出不准确的结论

            (2)算法过滤噪声点同时也是其缺点,造成了其不适    用于某些领域(比如网络安全领域中恶意攻击的判断)

这篇关于聚类算法:DBScan算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084577

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个