NeRF从入门到放弃2:InstantNGP

2024-06-22 14:12
文章标签 入门 放弃 nerf instantngp

本文主要是介绍NeRF从入门到放弃2:InstantNGP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原始的NeRF每条光线上的点都要经过MLP的查询,才能得到其密度和颜色值,要查询的点非常多,而MLP的推理是比较耗时的。

InstantNGP将空间划分成多个层级的体素(voxels),并且在每个体素内部使用神经网络来预测feature。

而Plenoxels则干脆就不使用神经网络了,它直接在体素中存储场景的辐射亮度和密度信息。通过使用球谐函数(Spherical Harmonics)来近似每个体素内的光照分布,Plenoxels能够有效地压缩存储需求,同时保持高质量的渲染效果。这种方法避免了复杂的神经网络计算,显著提升了渲染速度。Tesla用的就是这种方法。

Direct Voxel Grid也是类似的想法。

现在比较常调用的是InstantNGP,所以我们重点看这个方法。

算法解读

在这里插入图片描述

Given a fully connected neural network 𝑚(y; Φ), we are interested in an encoding of its inputs y = enc(x; 𝜃 ) that improves the approximation quality and training speed across a wide range of applications without incurring a notable performance overhead

InstantNGP把空间划分成多个分辨率,具体查询某个点的feature时,利用hash表查询到这个点附近的四个角点,这四个角点的feature是已知的,通过三线性插值的方法,得到该点在该分辨率下的feature。

最终的feature是多个分辨率下的feature concate起来,作为最终的feature。

也就是说,原始的NeRF是输入(x,y,z),经过mlp,输出feature;而InstantNGP是输入(x,y,z),查询其4个邻域的feature(事先编码好的,所以很快),插值得到feature。

参数意义

在这里插入图片描述
在这里插入图片描述

5个参数,根据最小、最大分辨率和层数,计算出每一层的放大系数,也就是等比数列的公比(也就是b)。算出公比后每一层的分辨率就是Nmin * b的l次方,l是层的序号。

F是要编码成的向量的维度。

T表示hash表的最大容量,如果超过了这个最大容量,就会出现hash冲突。

如第一张图中编码的feature是2维,有2个层级(L),那最后的特征向量就是这两个层级的特征向量concate起来,是4维度。

代码实例

# nerfstudio/field_components/encodings.py
class HashEncoding(Encoding):"""Hash encodingArgs:num_levels: Number of feature grids.min_res: Resolution of smallest feature grid.max_res: Resolution of largest feature grid.log2_hashmap_size: Size of hash map is 2^log2_hashmap_size.features_per_level: Number of features per level.hash_init_scale: Value to initialize hash grid.implementation: Implementation of hash encoding. Fallback to torch if tcnn not available.interpolation: Interpolation override for tcnn hashgrid. Not supported for torch unless linear.n_input_dims: Number of input dimensions (typically 3 for x,y,z)"""def __init__(self,num_levels: int = 16,min_res: int = 16,max_res: int = 1024,log2_hashmap_size: int = 19,features_per_level: int = 2,hash_init_scale: float = 0.001,implementation: Literal["tcnn", "torch"] = "tcnn",interpolation: Optional[Literal["Nearest", "Linear", "Smoothstep"]] = None,n_input_dims: int = 3,) -> None:super().__init__(in_dim=3)self.num_levels = num_levelsself.min_res = min_resself.features_per_level = features_per_levelself.hash_init_scale = hash_init_scaleself.log2_hashmap_size = log2_hashmap_sizeself.hash_table_size = 2**log2_hashmap_sizeself.min_res = min_resself.hash_init_scale = hash_init_scalelevels = torch.arange(num_levels)self.growth_factor = np.exp((np.log(max_res) - np.log(min_res)) / (num_levels - 1)) if num_levels > 1 else 1.0self.register_buffer("scalings", torch.floor(min_res * self.growth_factor**levels))self.hash_offset = levels * self.hash_table_sizeself.tcnn_encoding = Noneself.hash_table = torch.empty(0)if implementation == "torch":self.build_nn_modules()elif implementation == "tcnn" and not TCNN_EXISTS:print_tcnn_speed_warning("HashEncoding")self.build_nn_modules()elif implementation == "tcnn":encoding_config = self.get_tcnn_encoding_config(num_levels=self.num_levels,features_per_level=self.features_per_level,log2_hashmap_size=self.log2_hashmap_size,min_res=self.min_res,growth_factor=self.growth_factor,interpolation=interpolation,)self.tcnn_encoding = tcnn.Encoding(n_input_dims=n_input_dims,encoding_config=encoding_config,)if self.tcnn_encoding is None:assert (interpolation is None or interpolation == "Linear"), f"interpolation '{interpolation}' is not supported for torch encoding backend"def build_nn_modules(self) -> None:"""Initialize the torch version of the hash encoding."""self.hash_table = torch.rand(size=(self.hash_table_size * self.num_levels, self.features_per_level)) * 2 - 1self.hash_table *= self.hash_init_scaleself.hash_table = nn.Parameter(self.hash_table)

这篇关于NeRF从入门到放弃2:InstantNGP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084511

相关文章

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis