计算机建模| FIT3139 Computational Modelling and Simulation – PAPER 1

本文主要是介绍计算机建模| FIT3139 Computational Modelling and Simulation – PAPER 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本次澳洲写主要为计算机建模相关的限时测试

Question 1 [10 marks = 5 + 5 ]
This question is about errors and computer arithmetic.
A) Determine an expression that approximates the condition number for the following
function:
f(x) = e3x2+1
B) Explain what are the implications of the condition number being large.

Question 2 [15 marks = 10 + 5 ]
This question is about linear systems.
A) Compute the matrices L and U that correspond to the LU factorisation of A (i.e.,
A = LU). Explain step by step your computation, stating the elimination matrices
you use at each step.
A =
0
B @
2 1 2
10 6 12
4 6 15
1
C A

B) Sometimes an LU decomposition of A is expressed as PA = LU. This is known as
partial pivoting. What is the purpose of partial pivoting and how is it performed?

Question 3 [10 marks]
This question is about solving non-linear equations. Using pseudocode write down an
algorithm to nd the root of a non-linear function f(x) using the Secant method. Your
algorithm should use initial guesses x0 and x1, and stop when the absolute error is less
than .

Question 4 [10 marks = 5 + 5 ]
This question is about solving second-order dierence equations.
A) Consider the second-order dierence equation with:
Xt = 7Xt 1 6Xt 2; X0 = 0; X1 = 1
Write this system as a rst-order matrix dierence equation. That is, nd the
matrix, M, such that ”
Xt
Xt 1
#
= M

Xt 1
Xt 2
#
:

B) Using an eigendecomposition of M, nd an explicit solution to the system above.

这篇关于计算机建模| FIT3139 Computational Modelling and Simulation – PAPER 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084326

相关文章

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频)

这是什么系统? 资源获取方式在最下方 java计算机毕设课设—停车管理信息系统(附源码、文章、相关截图、部署视频) 停车管理信息系统是为了提升停车场的运营效率和管理水平而设计的综合性平台。系统涵盖用户信息管理、车位管理、收费管理、违规车辆处理等多个功能模块,旨在实现对停车场资源的高效配置和实时监控。此外,系统还提供了资讯管理和统计查询功能,帮助管理者及时发布信息并进行数据分析,为停车场的科学

OCC开发_变高箱梁全桥建模

概述     上一篇文章《OCC开发_箱梁梁体建模》中详细介绍了箱梁梁体建模的过程。但是,对于实际桥梁,截面可能存在高度、腹板厚度、顶底板厚度变化,全桥的结构中心线存在平曲线和竖曲线。针对实际情况,通过一个截面拉伸来实现全桥建模显然不可能。因此,针对变高箱梁,本文新的思路来实现全桥建模。 思路 上一篇文章通过一个截面拉伸生成几何体的方式行不通,我们可以通过不同面来形成棱柱的方式实现。具体步骤

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

2024年高教社杯数学建模国赛最后一步——结果检验-事关最终奖项

2024年国赛已经来到了最后一天,有必要去给大家讲解一下,我们不需要过多的去关注模型的结果,因为模型的结果的分值设定项最多不到20分。但是如果大家真的非常关注的话,那有必要给大家讲解一下论文结果相关的问题。很多的论文,上至国赛优秀论文下至不获奖的论文并不是所有的论文都可以进行完整的复现求解,大部分数模论文都为存在一个灰色地带。         白色地带即认为所有的代码均可运行、公开