K-means聚类算法详解与实战

2024-06-22 09:28

本文主要是介绍K-means聚类算法详解与实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

K-means聚类算法是一种无监督学习算法,旨在将数据点划分为K个不同的聚类或群组,使得同一聚类内的数据点尽可能相似,而不同聚类间的数据点尽可能不同。在图像处理、数据挖掘、客户细分等领域有着广泛的应用。本文将通过图文结合的方式,详细介绍K-means聚类算法的原理、步骤,并通过Python代码展示其实现过程。

二、K-means算法原理

K-means算法基于迭代的思想,通过不断迭代优化聚类结果,最终将数据划分为K个聚类。算法的主要步骤如下:

  1. 初始化:随机选择K个数据点作为初始聚类中心(质心)。
  2. 分配数据点到最近的质心:对于每个数据点,计算其与所有质心的距离,并将其分配给距离最近的质心所对应的聚类。
  3. 更新质心:对于每个聚类,计算其内部所有数据点的均值,并将该均值设为新的质心。
  4. 迭代:重复步骤2和3,直到达到预设的迭代次数或聚类结果不再发生显著变化为止。

三、K-means算法实现

1. 数据准备

首先,我们需要准备一些数据来进行聚类。这里我们使用sklearn库中的make_blobs函数生成模拟数据。

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成模拟数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 绘制原始数据分布
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.show()

2. 使用sklearn的K-means进行聚类

接下来,我们使用sklearn库中的KMeans类来进行K-means聚类。

from sklearn.cluster import KMeans# 设置聚类数量为4
kmeans = KMeans(n_clusters=4)# 拟合数据
kmeans.fit(X)# 获取聚类结果和质心位置
labels = kmeans.labels_
centers = kmeans.cluster_centers_# 绘制聚类结果和质心位置
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)
plt.show()

3. K-means算法性能评估

对于K-means聚类结果的评估,常用的指标有轮廓系数(Silhouette Coefficient)和Calinski-Harabasz Index等。这里我们使用轮廓系数来评估聚类效果。

from sklearn.metrics import silhouette_score# 计算轮廓系数
score = silhouette_score(X, labels)
print("Silhouette Coefficient: ", score)

四、总结

K-means聚类算法是一种简单而有效的无监督学习算法,适用于数据探索和初步的数据分析。通过调整聚类数量K和迭代次数等参数,我们可以得到不同的聚类结果。然而,K-means算法也有一些局限性,例如对初始质心的选择敏感、对噪声和异常值敏感等。在实际应用中,我们需要根据具体的数据特点和需求选择合适的聚类算法。

这篇关于K-means聚类算法详解与实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083897

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装