K-means聚类算法详解与实战

2024-06-22 09:28

本文主要是介绍K-means聚类算法详解与实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

K-means聚类算法是一种无监督学习算法,旨在将数据点划分为K个不同的聚类或群组,使得同一聚类内的数据点尽可能相似,而不同聚类间的数据点尽可能不同。在图像处理、数据挖掘、客户细分等领域有着广泛的应用。本文将通过图文结合的方式,详细介绍K-means聚类算法的原理、步骤,并通过Python代码展示其实现过程。

二、K-means算法原理

K-means算法基于迭代的思想,通过不断迭代优化聚类结果,最终将数据划分为K个聚类。算法的主要步骤如下:

  1. 初始化:随机选择K个数据点作为初始聚类中心(质心)。
  2. 分配数据点到最近的质心:对于每个数据点,计算其与所有质心的距离,并将其分配给距离最近的质心所对应的聚类。
  3. 更新质心:对于每个聚类,计算其内部所有数据点的均值,并将该均值设为新的质心。
  4. 迭代:重复步骤2和3,直到达到预设的迭代次数或聚类结果不再发生显著变化为止。

三、K-means算法实现

1. 数据准备

首先,我们需要准备一些数据来进行聚类。这里我们使用sklearn库中的make_blobs函数生成模拟数据。

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成模拟数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 绘制原始数据分布
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.show()

2. 使用sklearn的K-means进行聚类

接下来,我们使用sklearn库中的KMeans类来进行K-means聚类。

from sklearn.cluster import KMeans# 设置聚类数量为4
kmeans = KMeans(n_clusters=4)# 拟合数据
kmeans.fit(X)# 获取聚类结果和质心位置
labels = kmeans.labels_
centers = kmeans.cluster_centers_# 绘制聚类结果和质心位置
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)
plt.show()

3. K-means算法性能评估

对于K-means聚类结果的评估,常用的指标有轮廓系数(Silhouette Coefficient)和Calinski-Harabasz Index等。这里我们使用轮廓系数来评估聚类效果。

from sklearn.metrics import silhouette_score# 计算轮廓系数
score = silhouette_score(X, labels)
print("Silhouette Coefficient: ", score)

四、总结

K-means聚类算法是一种简单而有效的无监督学习算法,适用于数据探索和初步的数据分析。通过调整聚类数量K和迭代次数等参数,我们可以得到不同的聚类结果。然而,K-means算法也有一些局限性,例如对初始质心的选择敏感、对噪声和异常值敏感等。在实际应用中,我们需要根据具体的数据特点和需求选择合适的聚类算法。

这篇关于K-means聚类算法详解与实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083897

相关文章

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.