K-means聚类算法详解与实战

2024-06-22 09:28

本文主要是介绍K-means聚类算法详解与实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

K-means聚类算法是一种无监督学习算法,旨在将数据点划分为K个不同的聚类或群组,使得同一聚类内的数据点尽可能相似,而不同聚类间的数据点尽可能不同。在图像处理、数据挖掘、客户细分等领域有着广泛的应用。本文将通过图文结合的方式,详细介绍K-means聚类算法的原理、步骤,并通过Python代码展示其实现过程。

二、K-means算法原理

K-means算法基于迭代的思想,通过不断迭代优化聚类结果,最终将数据划分为K个聚类。算法的主要步骤如下:

  1. 初始化:随机选择K个数据点作为初始聚类中心(质心)。
  2. 分配数据点到最近的质心:对于每个数据点,计算其与所有质心的距离,并将其分配给距离最近的质心所对应的聚类。
  3. 更新质心:对于每个聚类,计算其内部所有数据点的均值,并将该均值设为新的质心。
  4. 迭代:重复步骤2和3,直到达到预设的迭代次数或聚类结果不再发生显著变化为止。

三、K-means算法实现

1. 数据准备

首先,我们需要准备一些数据来进行聚类。这里我们使用sklearn库中的make_blobs函数生成模拟数据。

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成模拟数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 绘制原始数据分布
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.show()

2. 使用sklearn的K-means进行聚类

接下来,我们使用sklearn库中的KMeans类来进行K-means聚类。

from sklearn.cluster import KMeans# 设置聚类数量为4
kmeans = KMeans(n_clusters=4)# 拟合数据
kmeans.fit(X)# 获取聚类结果和质心位置
labels = kmeans.labels_
centers = kmeans.cluster_centers_# 绘制聚类结果和质心位置
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)
plt.show()

3. K-means算法性能评估

对于K-means聚类结果的评估,常用的指标有轮廓系数(Silhouette Coefficient)和Calinski-Harabasz Index等。这里我们使用轮廓系数来评估聚类效果。

from sklearn.metrics import silhouette_score# 计算轮廓系数
score = silhouette_score(X, labels)
print("Silhouette Coefficient: ", score)

四、总结

K-means聚类算法是一种简单而有效的无监督学习算法,适用于数据探索和初步的数据分析。通过调整聚类数量K和迭代次数等参数,我们可以得到不同的聚类结果。然而,K-means算法也有一些局限性,例如对初始质心的选择敏感、对噪声和异常值敏感等。在实际应用中,我们需要根据具体的数据特点和需求选择合适的聚类算法。

这篇关于K-means聚类算法详解与实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083897

相关文章

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输